{"title":"Synthesis and characterization of antibacterial and low‐temperature resistant slow rebound polyurethane foams","authors":"Jing Cao, Li Wang, Yuying Zheng","doi":"10.1002/pen.26875","DOIUrl":null,"url":null,"abstract":"<jats:label/>Slow rebound polyurethane foam (SPUF) has been widely used due to its advantages such as sound insulation, energy absorption, and good tactile sensation. However, SPUF is prone to harden at low temperature, and its application in medical equipment and households requires significant antibacterial properties. In this paper, self‐made silicone modified polyethylene glycol (Si‐APEG) and graphene oxide supported allicin (Alc@GO) were prepared and used as low‐temperature resistant agent and antibacterial agent, respectively. Low‐temperature resistant polyurethane foam (LSPUF) and antibacterial LSPUF (ALSPUF) were prepared respectively with water as foaming agent. The morphology of ALSPUF was observed by scanning electron microscope. Properties studied include apparent core density and porosity, mechanical properties including tensile strength, 40% compressive hardness, and rebound resilience, as well as low‐temperature resistance. Effects of Si‐APEG content on the structures and properties were analyzed and the LSPUF with an Si‐APEG content of 10 wt.% showed the best comprehensive performance. Therefore, ALSPUFs with Si‐APEG content of 10 wt.% and Alc@GO content of 0–3 wt.% were prepared. The addition of Alc@GO increased the antibacterial ratio significantly without obvious effect on the structure and mechanical properties of LSPUF. The antibacterial ratio of ALSPUF reached 99.07% at a Alc@GO content of 2.5 wt.% and testing time of 60 min. This work provides an effective and feasible method for the preparation of ALSPUF which can be widely used in medical devices and households.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Silicone modified polyether is a suitable low‐temperature resistant agent for PU foam.</jats:list-item> <jats:list-item>Allicin supported on GO provides good antibacterial property for PU foam.</jats:list-item> <jats:list-item>ALSPUF has better mechanical properties than SPU.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"11 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26875","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Slow rebound polyurethane foam (SPUF) has been widely used due to its advantages such as sound insulation, energy absorption, and good tactile sensation. However, SPUF is prone to harden at low temperature, and its application in medical equipment and households requires significant antibacterial properties. In this paper, self‐made silicone modified polyethylene glycol (Si‐APEG) and graphene oxide supported allicin (Alc@GO) were prepared and used as low‐temperature resistant agent and antibacterial agent, respectively. Low‐temperature resistant polyurethane foam (LSPUF) and antibacterial LSPUF (ALSPUF) were prepared respectively with water as foaming agent. The morphology of ALSPUF was observed by scanning electron microscope. Properties studied include apparent core density and porosity, mechanical properties including tensile strength, 40% compressive hardness, and rebound resilience, as well as low‐temperature resistance. Effects of Si‐APEG content on the structures and properties were analyzed and the LSPUF with an Si‐APEG content of 10 wt.% showed the best comprehensive performance. Therefore, ALSPUFs with Si‐APEG content of 10 wt.% and Alc@GO content of 0–3 wt.% were prepared. The addition of Alc@GO increased the antibacterial ratio significantly without obvious effect on the structure and mechanical properties of LSPUF. The antibacterial ratio of ALSPUF reached 99.07% at a Alc@GO content of 2.5 wt.% and testing time of 60 min. This work provides an effective and feasible method for the preparation of ALSPUF which can be widely used in medical devices and households.HighlightsSilicone modified polyether is a suitable low‐temperature resistant agent for PU foam.Allicin supported on GO provides good antibacterial property for PU foam.ALSPUF has better mechanical properties than SPU.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.