{"title":"Combined electroosmotic and pressure driven flow through soft nanochannel grafted with partially ion-penetrable polyelectrolyte layers","authors":"Deepak Kumar, Bhanuman Barman","doi":"10.1080/08927022.2024.2388788","DOIUrl":null,"url":null,"abstract":"This study explores the coupled effects of pressure-driven and electroosmotic flows in a soft nanochannel filled with non-Newtonian ionised liquid, where the inner walls are coated with a polymer l...","PeriodicalId":18863,"journal":{"name":"Molecular Simulation","volume":"12 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Simulation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/08927022.2024.2388788","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the coupled effects of pressure-driven and electroosmotic flows in a soft nanochannel filled with non-Newtonian ionised liquid, where the inner walls are coated with a polymer l...
期刊介绍:
Molecular Simulation covers all aspects of research related to, or of importance to, molecular modelling and simulation.
Molecular Simulation brings together the most significant papers concerned with applications of simulation methods, and original contributions to the development of simulation methodology from biology, biochemistry, chemistry, engineering, materials science, medicine and physics.
The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
Molecular Simulation is of interest to all researchers using or developing simulation methods based on statistical mechanics/quantum mechanics. This includes molecular dynamics (MD, AIMD), Monte Carlo, ab initio methods related to simulation, multiscale and coarse graining methods.