Exploring the applicability of Large Language Models to citation context analysis

Kai Nishikawa, Hitoshi Koshiba
{"title":"Exploring the applicability of Large Language Models to citation context analysis","authors":"Kai Nishikawa, Hitoshi Koshiba","doi":"arxiv-2409.02443","DOIUrl":null,"url":null,"abstract":"Unlike traditional citation analysis -- which assumes that all citations in a\npaper are equivalent -- citation context analysis considers the contextual\ninformation of individual citations. However, citation context analysis\nrequires creating large amounts of data through annotation, which hinders the\nwidespread use of this methodology. This study explored the applicability of\nLarge Language Models (LLMs) -- particularly ChatGPT -- to citation context\nanalysis by comparing LLMs and human annotation results. The results show that\nthe LLMs annotation is as good as or better than the human annotation in terms\nof consistency but poor in terms of predictive performance. Thus, having LLMs\nimmediately replace human annotators in citation context analysis is\ninappropriate. However, the annotation results obtained by LLMs can be used as\nreference information when narrowing the annotation results obtained by\nmultiple human annotators to one, or LLMs can be used as one of the annotators\nwhen it is difficult to prepare sufficient human annotators. This study\nprovides basic findings important for the future development of citation\ncontext analyses.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike traditional citation analysis -- which assumes that all citations in a paper are equivalent -- citation context analysis considers the contextual information of individual citations. However, citation context analysis requires creating large amounts of data through annotation, which hinders the widespread use of this methodology. This study explored the applicability of Large Language Models (LLMs) -- particularly ChatGPT -- to citation context analysis by comparing LLMs and human annotation results. The results show that the LLMs annotation is as good as or better than the human annotation in terms of consistency but poor in terms of predictive performance. Thus, having LLMs immediately replace human annotators in citation context analysis is inappropriate. However, the annotation results obtained by LLMs can be used as reference information when narrowing the annotation results obtained by multiple human annotators to one, or LLMs can be used as one of the annotators when it is difficult to prepare sufficient human annotators. This study provides basic findings important for the future development of citation context analyses.
探索大语言模型在引文语境分析中的适用性
传统的引文分析假定论文中的所有引文都是等价的,而引文上下文分析则不同,它考虑的是单个引文的上下文信息。然而,引文语境分析需要通过标注来创建大量数据,这阻碍了该方法的广泛应用。本研究通过比较大型语言模型(LLM)和人工标注结果,探索了大型语言模型(尤其是 ChatGPT)在引文上下文分析中的适用性。结果表明,LLMs 的注释在一致性方面与人类注释一样好,甚至更好,但在预测性能方面却很差。因此,在引文上下文分析中让 LLMs 立即取代人类注释者是不合适的。不过,在将多个人工标注员的标注结果缩小到一个标注员的标注结果时,可以将 LLM 获得的标注结果作为参考信息;或者在难以准备足够的人工标注员时,可以将 LLM 作为标注员之一。这项研究为引文上下文分析的未来发展提供了重要的基本结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信