Fixed-time integral sliding mode formation trajectory tracking control for multi-underactuated autonomous underwater vehicle in three-dimensional space
Kaihang Zhang, Wei Zhang, Honghan Zhang, Yiming Yang, Yefan Shi
{"title":"Fixed-time integral sliding mode formation trajectory tracking control for multi-underactuated autonomous underwater vehicle in three-dimensional space","authors":"Kaihang Zhang, Wei Zhang, Honghan Zhang, Yiming Yang, Yefan Shi","doi":"10.1177/14750902241265903","DOIUrl":null,"url":null,"abstract":"This paper investigates a trajectory tracking control method for multi-underactuated underwater vehicle (AUV) formations with uncertain model parameters and external environmental disturbances. Firstly, a dual closed-loop fixed-time integral sliding mode controller is designed. By combining fixed-time theory and integral sliding mode control, this controller ensures the stability of the formation tracking and guarantees the convergence of the tracking error to zero within a fixed time duration. Secondly, an adaptive radial basis function (RBF) neural network controller is integrated with a conditional integrator to address uncertainties in model parameters, approximation errors, and external environmental disturbances in practical multi-AUV systems. This controller exhibits robustness and adaptivity. Additionally, a virtual leader strategy is employed to enhance the robustness of the formation system and prevent formation collapse caused by leader AUV failures. Finally, simulation results validate the effectiveness of the proposed formation controller, demonstrating accurate trajectory tracking by the AUV formation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241265903","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates a trajectory tracking control method for multi-underactuated underwater vehicle (AUV) formations with uncertain model parameters and external environmental disturbances. Firstly, a dual closed-loop fixed-time integral sliding mode controller is designed. By combining fixed-time theory and integral sliding mode control, this controller ensures the stability of the formation tracking and guarantees the convergence of the tracking error to zero within a fixed time duration. Secondly, an adaptive radial basis function (RBF) neural network controller is integrated with a conditional integrator to address uncertainties in model parameters, approximation errors, and external environmental disturbances in practical multi-AUV systems. This controller exhibits robustness and adaptivity. Additionally, a virtual leader strategy is employed to enhance the robustness of the formation system and prevent formation collapse caused by leader AUV failures. Finally, simulation results validate the effectiveness of the proposed formation controller, demonstrating accurate trajectory tracking by the AUV formation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.