Chaos, synchronization, and emergent behaviors in memristive hopfield networks: bi-neuron and regular topology analysis

Bertrand Frederick Boui A Boya, Sishu Shankar Muni, José Luis Echenausía-Monroy, Jacques Kengne
{"title":"Chaos, synchronization, and emergent behaviors in memristive hopfield networks: bi-neuron and regular topology analysis","authors":"Bertrand Frederick Boui A Boya, Sishu Shankar Muni, José Luis Echenausía-Monroy, Jacques Kengne","doi":"10.1140/epjs/s11734-024-01297-x","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the dynamics of a Hopfield inertial bi-neuron with double memristive synaptic weights. The dynamical behavior of the system is investigated with both numerical and analytical studies to characterize the proposed model, which has up to thirty-nine equilibrium points. In this model, numerical simulations show many behaviors such as chaos, antimonotonicity of periodic and chaotic bubbles, and bursting oscillation (regular and irregular). Moreover, this system showed multiple coexistence of up to six different attractors, with the attractor basins confirming this phenomenon. A ring and star network of Hopfield neurons was also considered. We found interesting spatio-temporal regimes, including chimera and cluster states. Moreover, we showed a striking coexistence of synchronized, chimera, and cluster states in the network. The integration of multiple memristors in neural network systems holds promise for improving our understanding of the brain and developing more sophisticated artificial intelligence technologies that can better mimic human cognitive abilities.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01297-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the dynamics of a Hopfield inertial bi-neuron with double memristive synaptic weights. The dynamical behavior of the system is investigated with both numerical and analytical studies to characterize the proposed model, which has up to thirty-nine equilibrium points. In this model, numerical simulations show many behaviors such as chaos, antimonotonicity of periodic and chaotic bubbles, and bursting oscillation (regular and irregular). Moreover, this system showed multiple coexistence of up to six different attractors, with the attractor basins confirming this phenomenon. A ring and star network of Hopfield neurons was also considered. We found interesting spatio-temporal regimes, including chimera and cluster states. Moreover, we showed a striking coexistence of synchronized, chimera, and cluster states in the network. The integration of multiple memristors in neural network systems holds promise for improving our understanding of the brain and developing more sophisticated artificial intelligence technologies that can better mimic human cognitive abilities.

Abstract Image

记忆跳场网络中的混沌、同步和突发行为:双神经元和规则拓扑分析
本文研究了具有双记忆突触权重的 Hopfield 惯性双神经元的动力学。本文通过数值研究和分析研究对该系统的动力学行为进行了研究,以描述所提议模型的特征,该模型有多达 39 个平衡点。在该模型中,数值模拟显示了许多行为,如混沌、周期性气泡和混沌气泡的反单调性以及爆裂振荡(规则和不规则)。此外,该系统还显示了多达六个不同吸引子的多重共存,吸引子盆地证实了这一现象。我们还研究了由 Hopfield 神经元组成的环形和星形网络。我们发现了有趣的时空机制,包括嵌合和集群状态。此外,我们还发现网络中同步、嵌合和群集状态惊人地共存。在神经网络系统中集成多个忆阻器,有望增进我们对大脑的了解,并开发出更复杂的人工智能技术,从而更好地模拟人类的认知能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信