{"title":"Quantum genetic algorithm-based memory state feedback control for T–S fuzzy system","authors":"K. Sanjay, R. Vijay Aravind, P. Balasubramaniam","doi":"10.1140/epjs/s11734-024-01293-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the authors utilize a linear matrix inequality (LMI) technique for designing a quantum genetic algorithm (QGA)-based memory state feedback control of a nonlinear system. The performance of the proposed model is enhanced using the QGA-based algorithm for finding the control gain matrices as a searching tool. To evaluate the fitness function of QGA, the LMI problem is formulated as a constrained optimization. The more general Lyapunov–Krasovskii (LKFs) functional is selected to analyze the closed-loop system stability and the criterion for its asymptotic stability. Numerical examples are provided to verify the effectiveness of the QGA-based proposed control scheme.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01293-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the authors utilize a linear matrix inequality (LMI) technique for designing a quantum genetic algorithm (QGA)-based memory state feedback control of a nonlinear system. The performance of the proposed model is enhanced using the QGA-based algorithm for finding the control gain matrices as a searching tool. To evaluate the fitness function of QGA, the LMI problem is formulated as a constrained optimization. The more general Lyapunov–Krasovskii (LKFs) functional is selected to analyze the closed-loop system stability and the criterion for its asymptotic stability. Numerical examples are provided to verify the effectiveness of the QGA-based proposed control scheme.