A U-shaped CNN with type-2 fuzzy pooling layer and dynamical feature extraction for colorectal polyp applications

S. B. Tharun, S. Jagatheswari
{"title":"A U-shaped CNN with type-2 fuzzy pooling layer and dynamical feature extraction for colorectal polyp applications","authors":"S. B. Tharun, S. Jagatheswari","doi":"10.1140/epjs/s11734-024-01298-w","DOIUrl":null,"url":null,"abstract":"<p>This study aims to propose type-2 fuzzy pooling in a U-shaped convolutional neural network (CNN) architecture (T2FP_UNet). A CNN consists of convolutional, pooling, a fully connected layer, and activation functions. The pooling layer executes a fuzzy pooling operation, utilizing type-2 fuzzy membership function. In contrast to conventional methods (max and average pooling), the fuzzy pooling operation assigns membership values to pixels before computing fuzzy values, thereby preventing the encoder from losing features. The decoder implements dynamic feature extraction to acquire informative features. This approach improves the robustness and uncertainty handling of semantic image segmentation tasks using a modified U-Net architecture with type-2 fuzzy pooling layer and dynamic feature extraction. This method combines the advantages of the feature-fused U-Net architecture, type-2 fuzzy logic and dynamical feature extraction for handling complex uncertainties in image data. Comparative results are tabulated.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01298-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to propose type-2 fuzzy pooling in a U-shaped convolutional neural network (CNN) architecture (T2FP_UNet). A CNN consists of convolutional, pooling, a fully connected layer, and activation functions. The pooling layer executes a fuzzy pooling operation, utilizing type-2 fuzzy membership function. In contrast to conventional methods (max and average pooling), the fuzzy pooling operation assigns membership values to pixels before computing fuzzy values, thereby preventing the encoder from losing features. The decoder implements dynamic feature extraction to acquire informative features. This approach improves the robustness and uncertainty handling of semantic image segmentation tasks using a modified U-Net architecture with type-2 fuzzy pooling layer and dynamic feature extraction. This method combines the advantages of the feature-fused U-Net architecture, type-2 fuzzy logic and dynamical feature extraction for handling complex uncertainties in image data. Comparative results are tabulated.

Abstract Image

带有 2 型模糊池层和动态特征提取的 U 型 CNN 在结直肠息肉应用中的应用
本研究旨在提出 U 型卷积神经网络(CNN)架构(T2FP_UNet)中的第二类模糊池。CNN 由卷积层、池化层、全连接层和激活函数组成。池化层利用 2 型模糊成员函数执行模糊池化操作。与传统方法(最大池化和平均池化)不同,模糊池化操作是在计算模糊值之前为像素分配成员值,从而防止编码器丢失特征。解码器通过动态特征提取来获取信息特征。这种方法利用带有第 2 类模糊池层和动态特征提取的改进型 U-Net 架构,提高了语义图像分割任务的鲁棒性和不确定性处理能力。该方法结合了特征融合 U-Net 架构、2 型模糊逻辑和动态特征提取的优点,可用于处理图像数据中的复杂不确定性。比较结果列于表中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信