Ternary hybrid nanofluid flow and heat transfer at a permeable stretching sheet with slip boundary conditions

K. Varatharaj, R. Tamizharasi, K. Vajravelu
{"title":"Ternary hybrid nanofluid flow and heat transfer at a permeable stretching sheet with slip boundary conditions","authors":"K. Varatharaj, R. Tamizharasi, K. Vajravelu","doi":"10.1140/epjs/s11734-024-01295-z","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the optimization of heat transfer using a ternary hybrid nanofluid, an innovative advancement in nanofluid technology. The primary objective is to analyze the effects of first-order boundary slip conditions, thermal radiation, porous media, viscous dissipation, and Joule heating on the thermal dynamics of the nanofluid. The ternary hybrid nanofluid, consisting of silver (<i>Ag</i>), titanium dioxide (<span>\\(TiO_2\\)</span>), and alumina (<span>\\(Al_2O_3\\)</span>) nanoparticles suspended in water (<span>\\(H_2O\\)</span>), is selected for its potential to enhance heat transfer and thermal efficiency in various applications, including cooling systems, food processing, and refrigeration. The research employs magneto-hydrodynamics combined with the ternary hybrid nanofluid to improve energy and mass transfer processes. Through a similarity transformation, the governing equations are converted into a set of nonlinear ordinary differential equations, which are then solved numerically using the shooting technique integrated with MATLAB. Graphical representations and tabulated data illustrate the impact of different parameters on velocity and temperature fields, skin-friction coefficient, and local Nusselt number. Key findings indicate that increased values of radiation and magnetic parameters result in a thicker thermal boundary layer. The study also reveals that the velocity of the hybrid nanofluid can be effectively controlled by adjusting the magnetic field, porous media, and nanoparticle volume fraction. Notably, the ternary hybrid nanofluid (<span>\\(Ag-Al_2O_3-TiO_2/H_2O\\)</span>) demonstrates superior performance compared to hybrid nanofluids with a single component (<span>\\(Ag-Al_2O_3/H_2O\\)</span>). Comparisons with pre-existing data show favorable alignment, underscoring the robustness of the results. This research has significant implications for engineering, healthcare, and biomedical technology.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01295-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the optimization of heat transfer using a ternary hybrid nanofluid, an innovative advancement in nanofluid technology. The primary objective is to analyze the effects of first-order boundary slip conditions, thermal radiation, porous media, viscous dissipation, and Joule heating on the thermal dynamics of the nanofluid. The ternary hybrid nanofluid, consisting of silver (Ag), titanium dioxide (\(TiO_2\)), and alumina (\(Al_2O_3\)) nanoparticles suspended in water (\(H_2O\)), is selected for its potential to enhance heat transfer and thermal efficiency in various applications, including cooling systems, food processing, and refrigeration. The research employs magneto-hydrodynamics combined with the ternary hybrid nanofluid to improve energy and mass transfer processes. Through a similarity transformation, the governing equations are converted into a set of nonlinear ordinary differential equations, which are then solved numerically using the shooting technique integrated with MATLAB. Graphical representations and tabulated data illustrate the impact of different parameters on velocity and temperature fields, skin-friction coefficient, and local Nusselt number. Key findings indicate that increased values of radiation and magnetic parameters result in a thicker thermal boundary layer. The study also reveals that the velocity of the hybrid nanofluid can be effectively controlled by adjusting the magnetic field, porous media, and nanoparticle volume fraction. Notably, the ternary hybrid nanofluid (\(Ag-Al_2O_3-TiO_2/H_2O\)) demonstrates superior performance compared to hybrid nanofluids with a single component (\(Ag-Al_2O_3/H_2O\)). Comparisons with pre-existing data show favorable alignment, underscoring the robustness of the results. This research has significant implications for engineering, healthcare, and biomedical technology.

Abstract Image

具有滑移边界条件的渗透性拉伸片上的三元混合纳米流体流动与传热
本研究探讨了使用三元混合纳米流体优化传热的问题,这是纳米流体技术的一项创新进展。主要目的是分析一阶边界滑移条件、热辐射、多孔介质、粘性耗散和焦耳热对纳米流体热动力学的影响。三元混合纳米流体由银(Ag)、二氧化钛(TiO_2)和氧化铝(Al_2O_3)纳米粒子悬浮在水(H_2O)中组成,之所以选择这种纳米流体是因为它具有在冷却系统、食品加工和制冷等各种应用中提高传热和热效率的潜力。研究采用磁流体力学结合三元混合纳米流体来改善能量和质量传递过程。通过相似性转换,控制方程被转换成一组非线性常微分方程,然后使用与 MATLAB 集成的射频技术对其进行数值求解。图表和表格数据说明了不同参数对速度场和温度场、表皮摩擦系数以及局部努塞尔特数的影响。主要研究结果表明,辐射和磁参数值的增加会导致热边界层变厚。研究还发现,通过调整磁场、多孔介质和纳米粒子体积分数,可以有效控制混合纳米流体的速度。值得注意的是,三元混合纳米流体(\(Ag-Al_2O_3-TiO_2/H_2O\))与单组分混合纳米流体(\(Ag-Al_2O_3/H_2O\))相比表现出更优越的性能。与已有数据的比较显示出良好的一致性,突出了结果的稳健性。这项研究对工程、医疗保健和生物医学技术具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信