Enumeration of multivariate independence polynomial for iterations of Sierpinski triangle graph

K. S. Nithiya, D. Easwaramoorthy
{"title":"Enumeration of multivariate independence polynomial for iterations of Sierpinski triangle graph","authors":"K. S. Nithiya, D. Easwaramoorthy","doi":"10.1140/epjs/s11734-024-01304-1","DOIUrl":null,"url":null,"abstract":"<p>In dynamical systems, fractals and their features have been proven for a wide range of applications in graphical structures. In particular, self-similar graphs as well as graph polynomials play a vital role. This paper explores the characteristics of the polynomials for the family of well-known self-similar graphs, namely Sierpinski triangle graph of the <span>\\(n^{\\text {th}}\\)</span> iteration, and proposes an algorithm to compute the multivariate independence polynomials of these graphs. We employ iterative patterns from the Sierpinski triangle graph, and we implement our approach to explicitly compute the independent sets to formulate multivariate independence polynomials for iterative values of <i>n</i>. In addition, the inverse of these polynomials have been computed using SAGE software.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01304-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In dynamical systems, fractals and their features have been proven for a wide range of applications in graphical structures. In particular, self-similar graphs as well as graph polynomials play a vital role. This paper explores the characteristics of the polynomials for the family of well-known self-similar graphs, namely Sierpinski triangle graph of the \(n^{\text {th}}\) iteration, and proposes an algorithm to compute the multivariate independence polynomials of these graphs. We employ iterative patterns from the Sierpinski triangle graph, and we implement our approach to explicitly compute the independent sets to formulate multivariate independence polynomials for iterative values of n. In addition, the inverse of these polynomials have been computed using SAGE software.

Abstract Image

迭代西尔平斯基三角形图的多元独立性多项式枚举
在动力学系统中,分形及其特征已被证明可广泛应用于图形结构。其中,自相似图以及图多项式起着至关重要的作用。本文探讨了众所周知的自相似图族,即 Sierpinski 三角形图的(n^{text {th}}\ )迭代多项式的特征,并提出了一种计算这些图的多元独立性多项式的算法。我们采用了西尔平斯基三角形图的迭代模式,并实现了显式计算独立集的方法,以求出 n 的迭代值的多元独立性多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信