Investigating the quality measures of image enhancement by convoluting the coefficients of analytic functions

B. Nandhini, B. Sruthakeerthi
{"title":"Investigating the quality measures of image enhancement by convoluting the coefficients of analytic functions","authors":"B. Nandhini, B. Sruthakeerthi","doi":"10.1140/epjs/s11734-024-01317-w","DOIUrl":null,"url":null,"abstract":"<p>The aim of this research is to enhance image quality by applying convolution methods to a newly generalized subclass of an analytic function, <span>\\(k-\\Omega S^*(\\rho ,\\beta )\\)</span>, which incorporates the concept of the Mittag-Leffer type Poisson distribution associated with starlike functions. Image enhancement processes, such as noise reduction, sharpening, and brightening, improve the image’s suitability for display or further analysis. The proposed method demonstrates superior results based on performance metrics including PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), MSQE (Mean Squared Error), RMSE (Root Mean Squared Error), PCC (Pearson Correlation Coefficient), and CIR (Contrast Improvement Ratio). For the flower dataset, the technique achieves values of 20.425 for PSNR, 0.8866 for SSIM, 765.044 for MSQE, 27.143 for RMSE, 0.1310 for PCC, and 0.9794 for CIR. Similarly, for the brain dataset, the quality metrics are 24.2981 for PSNR, 0.9773 for SSIM, 268.288 for MSQE, 16.0041 for RMSE, 0.9888 for PCC, and 0.2918 for CIR.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01317-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this research is to enhance image quality by applying convolution methods to a newly generalized subclass of an analytic function, \(k-\Omega S^*(\rho ,\beta )\), which incorporates the concept of the Mittag-Leffer type Poisson distribution associated with starlike functions. Image enhancement processes, such as noise reduction, sharpening, and brightening, improve the image’s suitability for display or further analysis. The proposed method demonstrates superior results based on performance metrics including PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), MSQE (Mean Squared Error), RMSE (Root Mean Squared Error), PCC (Pearson Correlation Coefficient), and CIR (Contrast Improvement Ratio). For the flower dataset, the technique achieves values of 20.425 for PSNR, 0.8866 for SSIM, 765.044 for MSQE, 27.143 for RMSE, 0.1310 for PCC, and 0.9794 for CIR. Similarly, for the brain dataset, the quality metrics are 24.2981 for PSNR, 0.9773 for SSIM, 268.288 for MSQE, 16.0041 for RMSE, 0.9888 for PCC, and 0.2918 for CIR.

Abstract Image

通过卷积解析函数系数研究图像增强的质量测量方法
这项研究的目的是通过将卷积方法应用于解析函数的一个新的广义子类--(k-\Omega S^*(\rho ,\beta )\)--来提高图像质量,这个子类包含了与星状函数相关的 Mittag-Leffer 型泊松分布的概念。图像增强处理,如降噪、锐化和增亮,可提高图像的显示或进一步分析的适用性。根据 PSNR(峰值信噪比)、SSIM(结构相似性指数)、MSQE(均方误差)、RMSE(均方根误差)、PCC(皮尔逊相关系数)和 CIR(对比度改进率)等性能指标,所提出的方法显示出卓越的效果。对于花朵数据集,该技术的 PSNR 值为 20.425,SSIM 为 0.8866,MSQE 为 765.044,RMSE 为 27.143,PCC 为 0.1310,CIR 为 0.9794。同样,大脑数据集的质量指标为:PSNR 为 24.2981、SSIM 为 0.9773、MSQE 为 268.288、RMSE 为 16.0041、PCC 为 0.9888、CIR 为 0.2918。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信