High Precision ECG Digitization Using Artificial Intelligence

Anthony Demolder, Viera Kresnakova, Michal Hojcka, Vladimir Boza, Andrej Iring, Adam Rafajdus, Simon Rovder, Timotej Palus, Martin Herman, Felix Bauer, Viktor Jurasek, Robert Hatala, Jozef Bartunek, Boris Vavrik, Robert Herman
{"title":"High Precision ECG Digitization Using Artificial Intelligence","authors":"Anthony Demolder, Viera Kresnakova, Michal Hojcka, Vladimir Boza, Andrej Iring, Adam Rafajdus, Simon Rovder, Timotej Palus, Martin Herman, Felix Bauer, Viktor Jurasek, Robert Hatala, Jozef Bartunek, Boris Vavrik, Robert Herman","doi":"10.1101/2024.08.31.24312876","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> The digitization of electrocardiograms (ECGs) is an important process in modern healthcare, enabling the preservation, transmission, and advanced analysis of ECG data. Traditional methods for digitizing ECGs from paper formats face significant challenges, particularly in real-world scenarios with varying image quality, paper distortions, and overlapping signals. Existing solutions often require manual input and are limited by their dependence on high-quality images and standardized layouts.","PeriodicalId":501297,"journal":{"name":"medRxiv - Cardiovascular Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.31.24312876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background The digitization of electrocardiograms (ECGs) is an important process in modern healthcare, enabling the preservation, transmission, and advanced analysis of ECG data. Traditional methods for digitizing ECGs from paper formats face significant challenges, particularly in real-world scenarios with varying image quality, paper distortions, and overlapping signals. Existing solutions often require manual input and are limited by their dependence on high-quality images and standardized layouts.
利用人工智能实现高精度心电图数字化
背景心电图(ECG)数字化是现代医疗保健中的一项重要工作,可实现心电图数据的保存、传输和高级分析。将心电图从纸质格式数字化的传统方法面临着巨大的挑战,尤其是在现实世界中图像质量参差不齐、纸张失真和信号重叠的情况下。现有的解决方案通常需要手动输入,并且受限于对高质量图像和标准化布局的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信