Precision phenotyping from routine laboratory parameters for machine learning out-of-hospital survival prediction using 4D time-dependent SHAP plots in an all-comers prospective PCI registry

Paul-Adrian Călburean, Anda-Cristina Scurtu, Paul Grebenisan, Ioana-Andreea Nistor, Victor Vacariu, Reka-Katalin Drincal, Ioana Paula Sulea, Tiberiu Oltean, László Hadadi
{"title":"Precision phenotyping from routine laboratory parameters for machine learning out-of-hospital survival prediction using 4D time-dependent SHAP plots in an all-comers prospective PCI registry","authors":"Paul-Adrian Călburean, Anda-Cristina Scurtu, Paul Grebenisan, Ioana-Andreea Nistor, Victor Vacariu, Reka-Katalin Drincal, Ioana Paula Sulea, Tiberiu Oltean, László Hadadi","doi":"10.1101/2024.08.31.24312888","DOIUrl":null,"url":null,"abstract":"<strong>Introduction</strong> Out-of-hospital mortality in coronary artery disease (CAD) is particularly high and established adverse event prediction tools are yet to be available. Our study aimed to investigate whether precision phenotyping can be performed using routine laboratory parameters for the prediction of out-of-hospital survival in a CAD population treated by percutaneous coronary intervention (PCI).","PeriodicalId":501297,"journal":{"name":"medRxiv - Cardiovascular Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.31.24312888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction Out-of-hospital mortality in coronary artery disease (CAD) is particularly high and established adverse event prediction tools are yet to be available. Our study aimed to investigate whether precision phenotyping can be performed using routine laboratory parameters for the prediction of out-of-hospital survival in a CAD population treated by percutaneous coronary intervention (PCI).
在全病例前瞻性PCI登记中,利用4D时间依赖性SHAP图从常规实验室参数中进行精准表型分析,从而进行机器学习的院外生存率预测
导言:冠状动脉疾病(CAD)的院外死亡率特别高,而目前还没有成熟的不良事件预测工具。我们的研究旨在探讨能否利用常规实验室参数进行精确表型,以预测接受经皮冠状动脉介入治疗(PCI)的冠心病患者的院外生存率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信