A hierarchical constrained density regression model for predicting cluster-level dose-response

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2024-08-26 DOI:10.1002/env.2880
Michael L. Pennell, Matthew W. Wheeler, Scott S. Auerbach
{"title":"A hierarchical constrained density regression model for predicting cluster-level dose-response","authors":"Michael L. Pennell,&nbsp;Matthew W. Wheeler,&nbsp;Scott S. Auerbach","doi":"10.1002/env.2880","DOIUrl":null,"url":null,"abstract":"<p>With the advent of new alternative methods for rapid toxicity screening of chemicals comes the need for new statistical methodologies which appropriately synthesize the large amount of data collected. For example, transcriptomic assays can be used to assess the impact of a chemical on thousands of genes, but current approaches to analyzing the data treat each gene separately and do not allow sharing of information among genes within pathways. Furthermore, the methods employed are fully parametric and do not account for changes in distribution shape that may occur at high exposure levels. To address the limitations of these methods, we propose Constrained Logistic Density Regression (COLDER) to model expression data from different genes simultaneously. Under COLDER, the dose-response function for each gene is assigned a prior via a discrete logistic stick-breaking process (LSBP) whose weights depend on gene-level characteristics (e.g., pathway membership) and atoms consist of different dose-response functions subject to a shape constraint that ensures biological plausibility. The posterior distribution for the benchmark dose among genes within the same pathways can be estimated directly from the model, which is another advantage over current methods. The ability of COLDER to predict gene-level dose-response is evaluated in a simulation study and the method is illustrated with data from a National Toxicology Program study of Aflatoxin B1.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2880","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2880","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of new alternative methods for rapid toxicity screening of chemicals comes the need for new statistical methodologies which appropriately synthesize the large amount of data collected. For example, transcriptomic assays can be used to assess the impact of a chemical on thousands of genes, but current approaches to analyzing the data treat each gene separately and do not allow sharing of information among genes within pathways. Furthermore, the methods employed are fully parametric and do not account for changes in distribution shape that may occur at high exposure levels. To address the limitations of these methods, we propose Constrained Logistic Density Regression (COLDER) to model expression data from different genes simultaneously. Under COLDER, the dose-response function for each gene is assigned a prior via a discrete logistic stick-breaking process (LSBP) whose weights depend on gene-level characteristics (e.g., pathway membership) and atoms consist of different dose-response functions subject to a shape constraint that ensures biological plausibility. The posterior distribution for the benchmark dose among genes within the same pathways can be estimated directly from the model, which is another advantage over current methods. The ability of COLDER to predict gene-level dose-response is evaluated in a simulation study and the method is illustrated with data from a National Toxicology Program study of Aflatoxin B1.

Abstract Image

用于预测群集级剂量反应的分层约束密度回归模型
随着用于快速筛选化学品毒性的新替代方法的出现,我们需要新的统计方法来适当综合收集到的大量数据。例如,转录组测定可用于评估化学品对数千个基因的影响,但目前的数据分析方法是将每个基因分开处理,不允许在通路中共享基因间的信息。此外,所采用的方法都是完全参数化的,没有考虑到高暴露水平下可能出现的分布形状变化。为了解决这些方法的局限性,我们提出了约束逻辑密度回归(COLDER)方法,以同时对不同基因的表达数据进行建模。在 COLDER 中,每个基因的剂量-反应函数都通过离散逻辑断棒过程(LSBP)分配一个先验值,该先验值的权重取决于基因水平特征(如通路成员资格),原子由不同的剂量-反应函数组成,并受到确保生物合理性的形状约束。同一通路中基因间基准剂量的后验分布可直接从模型中估算,这是目前方法的另一个优势。COLDER 预测基因水平剂量反应的能力在一项模拟研究中进行了评估,并用国家毒理学计划对黄曲霉毒素 B1 的研究数据对该方法进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信