{"title":"Burst Load Frequency Prediction Based on Google Cloud Platform Server","authors":"Hui Wang","doi":"10.1109/TCC.2024.3449884","DOIUrl":null,"url":null,"abstract":"The widespread use of cloud computing platforms has increased server load pressure. Especially the frequent occurrence of burst load problems caused resource waste, data damage and loss, and security loopholes, which have posed a severe threat to the service capabilities and stability of the cloud platform. To reduce or avoid the harm caused by burst load problems, this article conducts in-depth research on the frequency of burst loads. Based on Google cluster tracking data, this paper proposes a new burst load frequency calculation model called the ”Two-step Judgment” and a burst load frequency prediction model called the ”Combined-LSTM. ” The Two-step Judgment model uses data attributes for rough judgment and then uses the random forest algorithm for precise judgment to ensure accurate calculation of the frequency of burst loads. The Combined-LSTM model is a multi-input single-output prediction model constructed using a multi-model ensemble method. This model combines the advantages of the 1-Dimensional Convolutional Neural Network(1D-CNN), Gated Recurrent Unit(GRU), and Long Short-Term Memory(LSTM) and uses parallel computing methods to achieve accurate prediction of burst load frequency. According to the model evaluation, the Two-step Judgment model and the Combined-LSTM model showed significant advantages over other prediction models in accuracy, generalization ability, and time complexity.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1158-1171"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10648879/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of cloud computing platforms has increased server load pressure. Especially the frequent occurrence of burst load problems caused resource waste, data damage and loss, and security loopholes, which have posed a severe threat to the service capabilities and stability of the cloud platform. To reduce or avoid the harm caused by burst load problems, this article conducts in-depth research on the frequency of burst loads. Based on Google cluster tracking data, this paper proposes a new burst load frequency calculation model called the ”Two-step Judgment” and a burst load frequency prediction model called the ”Combined-LSTM. ” The Two-step Judgment model uses data attributes for rough judgment and then uses the random forest algorithm for precise judgment to ensure accurate calculation of the frequency of burst loads. The Combined-LSTM model is a multi-input single-output prediction model constructed using a multi-model ensemble method. This model combines the advantages of the 1-Dimensional Convolutional Neural Network(1D-CNN), Gated Recurrent Unit(GRU), and Long Short-Term Memory(LSTM) and uses parallel computing methods to achieve accurate prediction of burst load frequency. According to the model evaluation, the Two-step Judgment model and the Combined-LSTM model showed significant advantages over other prediction models in accuracy, generalization ability, and time complexity.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.