Large-Scale Measurements and Optimizations on Latency in Edge Clouds

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Heng Zhang;Shaoyuan Huang;Mengwei Xu;Deke Guo;Xiaofei Wang;Xin Wang;Victor C. M. Leung;Wenyu Wang
{"title":"Large-Scale Measurements and Optimizations on Latency in Edge Clouds","authors":"Heng Zhang;Shaoyuan Huang;Mengwei Xu;Deke Guo;Xiaofei Wang;Xin Wang;Victor C. M. Leung;Wenyu Wang","doi":"10.1109/TCC.2024.3452094","DOIUrl":null,"url":null,"abstract":"The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1218-1231"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10660479/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.
边缘云延迟的大规模测量和优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信