An Alternated Inertial Projection and Contraction Algorithm for Solving Quasimonotone Bilevel Variational Inequalities with Application to Optimal Control Problems

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
O. T. Mewomo, V. A. Uzor, A. Gibali
{"title":"An Alternated Inertial Projection and Contraction Algorithm for Solving Quasimonotone Bilevel Variational Inequalities with Application to Optimal Control Problems","authors":"O. T. Mewomo,&nbsp;V. A. Uzor,&nbsp;A. Gibali","doi":"10.1007/s10440-024-00678-7","DOIUrl":null,"url":null,"abstract":"<div><p>We are focused on solving a general class of bilevel variational inequalities involving quasimonotone operators in real Hilbert spaces. A strong convergent iterative method for solving the problem is presented and analysed. Our work generalizes several existing results in the literature and holds two major mathematical advantages. 1) Any generated sequence by the algorithm preserves the Fejér monotonicity property; and 2) There is no need to execute a line-search or know a-prior the strongly monotone coefficient or Lipschitz constant. Numerical experiments with comparisons to existing/related methods illustrate the performances of the proposed method and in particular, application to optimal control problems suggests the practical potential of our scheme.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00678-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We are focused on solving a general class of bilevel variational inequalities involving quasimonotone operators in real Hilbert spaces. A strong convergent iterative method for solving the problem is presented and analysed. Our work generalizes several existing results in the literature and holds two major mathematical advantages. 1) Any generated sequence by the algorithm preserves the Fejér monotonicity property; and 2) There is no need to execute a line-search or know a-prior the strongly monotone coefficient or Lipschitz constant. Numerical experiments with comparisons to existing/related methods illustrate the performances of the proposed method and in particular, application to optimal control problems suggests the practical potential of our scheme.

Abstract Image

一种用于求解准多项式双级变分不等式的交替惯性投影和收缩算法,并将其应用于最优控制问题
我们的重点是求解涉及实希尔伯特空间中准下调算子的一般双级变分不等式。我们提出并分析了解决该问题的强收敛迭代法。我们的工作概括了文献中已有的几个结果,并具有两大数学优势。1) 算法生成的任何序列都保留了费热尔单调性属性;以及 2) 无需执行线性搜索,也无需事先知道强单调系数或李普齐兹常数。与现有/相关方法进行比较的数值实验说明了所提方法的性能,特别是在最优控制问题上的应用表明我们的方案具有实用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信