Xin Wang;Jianhui Lv;Byung-Gyu Kim;Carsten Maple;B. D. Parameshachari;Adam Slowik;Keqin Li
{"title":"Generative Adversarial Privacy for Multimedia Analytics Across the IoT-Edge Continuum","authors":"Xin Wang;Jianhui Lv;Byung-Gyu Kim;Carsten Maple;B. D. Parameshachari;Adam Slowik;Keqin Li","doi":"10.1109/TCC.2024.3459789","DOIUrl":null,"url":null,"abstract":"The proliferation of multimedia-enabled IoT devices and edge computing enables a new class of data-intensive applications. However, analyzing the massive volumes of multimedia data presents significant privacy challenges. We propose a novel framework called generative adversarial privacy (GAP) that leverages generative adversarial networks (GANs) to synthesize privacy-preserving surrogate data for multimedia analytics across the IoT-Edge continuum. GAP carefully perturbs the GAN's training process to provide rigorous differential privacy guarantees without compromising utility. Moreover, we present optimization strategies, including dynamic privacy budget allocation, adaptive gradient clipping, and weight clustering to improve convergence and data quality under a constrained privacy budget. Theoretical analysis proves that GAP provides rigorous privacy protections while enabling high-fidelity analytics. Extensive experiments on real-world multimedia datasets demonstrate that GAP outperforms existing methods, producing high-quality synthetic data for privacy-preserving multimedia processing in diverse IoT-Edge applications.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1260-1272"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679090/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation of multimedia-enabled IoT devices and edge computing enables a new class of data-intensive applications. However, analyzing the massive volumes of multimedia data presents significant privacy challenges. We propose a novel framework called generative adversarial privacy (GAP) that leverages generative adversarial networks (GANs) to synthesize privacy-preserving surrogate data for multimedia analytics across the IoT-Edge continuum. GAP carefully perturbs the GAN's training process to provide rigorous differential privacy guarantees without compromising utility. Moreover, we present optimization strategies, including dynamic privacy budget allocation, adaptive gradient clipping, and weight clustering to improve convergence and data quality under a constrained privacy budget. Theoretical analysis proves that GAP provides rigorous privacy protections while enabling high-fidelity analytics. Extensive experiments on real-world multimedia datasets demonstrate that GAP outperforms existing methods, producing high-quality synthetic data for privacy-preserving multimedia processing in diverse IoT-Edge applications.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.