Wong-Zakai Approximations for the Stochastic Landau-Lifshitz-Bloch Equation with Helicity

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Soham Sanjay Gokhale
{"title":"Wong-Zakai Approximations for the Stochastic Landau-Lifshitz-Bloch Equation with Helicity","authors":"Soham Sanjay Gokhale","doi":"10.1007/s10440-024-00681-y","DOIUrl":null,"url":null,"abstract":"<div><p>For temperatures below and beyond the Curie temperature, the stochastic Landau-Lifshitz-Bloch equation describes the evolution of spins in ferromagnetic materials. In this work, we consider the stochastic Landau-Lifshitz-Bloch equation driven by a real valued Wiener process and show Wong-Zakai type approximations for the same. We consider non-zero contribution from the helicity term in the energy. First, using a Doss-Sussmann type transform, we convert the stochastic partial differential equation into a deterministic equation with random coefficients. We then show that the solution of the transformed equation depends continuously on the driving Wiener process. We then use this result, along with the properties of the said transform to show that the solution of the originally considered equation depends continuously on the driving Wiener process.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00681-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For temperatures below and beyond the Curie temperature, the stochastic Landau-Lifshitz-Bloch equation describes the evolution of spins in ferromagnetic materials. In this work, we consider the stochastic Landau-Lifshitz-Bloch equation driven by a real valued Wiener process and show Wong-Zakai type approximations for the same. We consider non-zero contribution from the helicity term in the energy. First, using a Doss-Sussmann type transform, we convert the stochastic partial differential equation into a deterministic equation with random coefficients. We then show that the solution of the transformed equation depends continuously on the driving Wiener process. We then use this result, along with the properties of the said transform to show that the solution of the originally considered equation depends continuously on the driving Wiener process.

带螺旋性的随机朗道-利夫希茨-布洛赫方程的黄扎凯近似值
在低于和超过居里温度的情况下,随机兰道-利夫希茨-布洛赫方程描述了铁磁材料中自旋的演变。在这项研究中,我们考虑了由实值维纳过程驱动的随机朗道-利夫希茨-布洛赫方程,并展示了黄-扎凯类型的近似。我们考虑了能量中螺旋项的非零贡献。首先,我们使用多斯-苏斯曼类型转换,将随机偏微分方程转换为具有随机系数的确定性方程。然后,我们证明转换后方程的解连续地依赖于驱动的维纳过程。然后,我们利用这一结果以及上述变换的特性,证明最初考虑的方程的解连续依赖于驱动的维纳过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信