Ultimate Boundedness of a Stochastic Chemostat Model with Periodic Nutrient Input and Random Disturbance

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Xiaofeng Zhang, Yujing Zhang
{"title":"Ultimate Boundedness of a Stochastic Chemostat Model with Periodic Nutrient Input and Random Disturbance","authors":"Xiaofeng Zhang,&nbsp;Yujing Zhang","doi":"10.1007/s10440-024-00683-w","DOIUrl":null,"url":null,"abstract":"<div><p>Stochastic ultimate boundedness has always been a very important property, which plays an important role in the study of stochastic models. Thus, in this paper, we will study a stochastic periodic chemostat system, in which we assume that the nutrient input concentration and noise intensities are periodic. In order to make the stochastic periodic model have mathematical and biological significance, we will study a very important issue: the existence, uniqueness and ultimate boundedness of a global positive solution for a stochastic periodic chemostat system.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00683-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic ultimate boundedness has always been a very important property, which plays an important role in the study of stochastic models. Thus, in this paper, we will study a stochastic periodic chemostat system, in which we assume that the nutrient input concentration and noise intensities are periodic. In order to make the stochastic periodic model have mathematical and biological significance, we will study a very important issue: the existence, uniqueness and ultimate boundedness of a global positive solution for a stochastic periodic chemostat system.

Abstract Image

具有周期性营养输入和随机扰动的随机恒温模型的终极约束性
随机终极有界性一直是一个非常重要的性质,在随机模型的研究中发挥着重要作用。因此,本文将研究一个随机周期性恒温系统,在这个系统中,我们假设营养物质输入浓度和噪声强度都是周期性的。为了使随机周期模型具有数学和生物学意义,我们将研究一个非常重要的问题:随机周期恒温系统全局正解的存在性、唯一性和最终有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信