Risk-indifference Pricing of American-style Contingent Claims

Rohini Kumar, Frederick "Forrest" Miller, Hussein Nasralah, Stephan Sturm
{"title":"Risk-indifference Pricing of American-style Contingent Claims","authors":"Rohini Kumar, Frederick \"Forrest\" Miller, Hussein Nasralah, Stephan Sturm","doi":"arxiv-2409.00095","DOIUrl":null,"url":null,"abstract":"This paper studies the pricing of contingent claims of American style, using\nindifference pricing by fully dynamic convex risk measures. We provide a\ngeneral definition of risk-indifference prices for buyers and sellers in\ncontinuous time, in a setting where buyer and seller have potentially different\ninformation, and show that these definitions are consistent with no-arbitrage\nprinciples. Specifying to stochastic volatility models, we characterize\nindifference prices via solutions of Backward Stochastic Differential Equations\nreflected at Backward Stochastic Differential Equations and show that this\ncharacterization provides a basis for the implementation of numerical methods\nusing deep learning.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the pricing of contingent claims of American style, using indifference pricing by fully dynamic convex risk measures. We provide a general definition of risk-indifference prices for buyers and sellers in continuous time, in a setting where buyer and seller have potentially different information, and show that these definitions are consistent with no-arbitrage principles. Specifying to stochastic volatility models, we characterize indifference prices via solutions of Backward Stochastic Differential Equations reflected at Backward Stochastic Differential Equations and show that this characterization provides a basis for the implementation of numerical methods using deep learning.
美式或有索赔的风险差异定价
本文研究了美式或有债权的定价问题,使用的是完全动态凸风险度量的差价定价法。在买方和卖方拥有潜在不同信息的情况下,我们为连续时间内的买方和卖方提供了风险差价的一般定义,并证明这些定义与无套利原则是一致的。针对随机波动模型,我们通过反映在后向随机微分方程中的后向随机微分方程解来描述差价,并证明这种描述为利用深度学习实现数值方法提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信