A. D. Danilov, A. V. Konstantinova, N. A. Berbeneva
{"title":"Long-Term Trends in the Height of the Ionospheric F2 Layer Peak","authors":"A. D. Danilov, A. V. Konstantinova, N. A. Berbeneva","doi":"10.1134/S0016793224600322","DOIUrl":null,"url":null,"abstract":"<p>Long-term variations (trends) in the height of the ionospheric <i>F</i>2 layer peak <i>hmF</i>2 is analyzed based on the data of Moscow and Juliusruh stations. The near-noon LT hours and two winter months (January and February) and two summer months (June and July) are considered for a period of 1996–2023. Well-pronounced and statistically significant negative <i>hmF</i>2 trends are found both in summer and winter. Overall, the <i>F</i>2 layer height decreased during the analyzed period by 0.5–1 km per year. The “Delta” method developed and published by the authors earlier is applied to the same data. The results confirm a systematic decrease in the <i>hmF</i>2 value in the past two decades. It is found that the <i>F</i>2 layer height has decreased in recent years more rapidly than in the earlier years.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600322","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term variations (trends) in the height of the ionospheric F2 layer peak hmF2 is analyzed based on the data of Moscow and Juliusruh stations. The near-noon LT hours and two winter months (January and February) and two summer months (June and July) are considered for a period of 1996–2023. Well-pronounced and statistically significant negative hmF2 trends are found both in summer and winter. Overall, the F2 layer height decreased during the analyzed period by 0.5–1 km per year. The “Delta” method developed and published by the authors earlier is applied to the same data. The results confirm a systematic decrease in the hmF2 value in the past two decades. It is found that the F2 layer height has decreased in recent years more rapidly than in the earlier years.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.