Evolution of large-scale flow structures in an axial-flow pump during performance breakdown

IF 4.1 2区 工程技术 Q1 MECHANICS
Lei Wang, Shaoxuan Kang, Yaojun Li, Weisheng Chen
{"title":"Evolution of large-scale flow structures in an axial-flow pump during performance breakdown","authors":"Lei Wang, Shaoxuan Kang, Yaojun Li, Weisheng Chen","doi":"10.1063/5.0229228","DOIUrl":null,"url":null,"abstract":"This paper presents a very large eddy simulation analysis of the unsteady flow in the pre-stall to stall transition process of an axial-flow pump, with the aim to elucidate the spatiotemporal evolution of large-scale flow structures during the performance breakdown of the pump. The transient flow is investigated utilizing a time-dependent flow rate computation scheme. The results demonstrate that, as the flow rate is dynamically reduced, the reduction in pump head is found lags behind the reduction in flow rate by approximately 15 impeller revolutions. The leading edge separation on the blade suction side (SS) evolves into a leading edge separation vortex (LSV) in conjunction with the dynamic reduction in flow rate. The attached flow on the SS in the vicinity of the hub and blade trailing edge squeezes the mainstream outwards, resulting in the formation of a cross passage vortex (CPV) on the tip side of the passage. The combined effect of the LSV, CPV, and tip-clearance flow induces a penetrating upstream flow in the tip region of the impeller, which gives rise to a swirling backflow within the inlet pipe. At stall, the CPV is stably attached to the SS and extends upstream of the leading edge of the neighboring blade. Furthermore, a trailing edge backflow is observed near the junction of the blade trailing edge and the hub, and it collides with the inflow near the hub, resulting in the formation of a hub-attached vortex.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0229228","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a very large eddy simulation analysis of the unsteady flow in the pre-stall to stall transition process of an axial-flow pump, with the aim to elucidate the spatiotemporal evolution of large-scale flow structures during the performance breakdown of the pump. The transient flow is investigated utilizing a time-dependent flow rate computation scheme. The results demonstrate that, as the flow rate is dynamically reduced, the reduction in pump head is found lags behind the reduction in flow rate by approximately 15 impeller revolutions. The leading edge separation on the blade suction side (SS) evolves into a leading edge separation vortex (LSV) in conjunction with the dynamic reduction in flow rate. The attached flow on the SS in the vicinity of the hub and blade trailing edge squeezes the mainstream outwards, resulting in the formation of a cross passage vortex (CPV) on the tip side of the passage. The combined effect of the LSV, CPV, and tip-clearance flow induces a penetrating upstream flow in the tip region of the impeller, which gives rise to a swirling backflow within the inlet pipe. At stall, the CPV is stably attached to the SS and extends upstream of the leading edge of the neighboring blade. Furthermore, a trailing edge backflow is observed near the junction of the blade trailing edge and the hub, and it collides with the inflow near the hub, resulting in the formation of a hub-attached vortex.
性能故障期间轴流泵中大尺度流动结构的演变
本文对轴流泵从失速前到失速过渡过程中的非稳态流动进行了超大涡模拟分析,旨在阐明泵性能故障期间大尺度流动结构的时空演变。利用随时间变化的流速计算方案对瞬态流动进行了研究。结果表明,随着流速的动态降低,发现泵扬程的降低滞后于流速的降低约 15 转。叶片吸入侧(SS)的前缘分离会随着流速的动态降低而演变成前缘分离涡流(LSV)。轮毂和叶片后缘附近 SS 上的附着流向外挤压主流,从而在通道顶端形成交叉通道漩涡 (CPV)。在 LSV、CPV 和叶尖清流的共同作用下,叶轮的叶尖区域会产生穿透性上游流,从而在进气管道内形成漩涡回流。失速时,CPV 稳定地附着在 SS 上,并向邻近叶片前缘的上游延伸。此外,在叶片后缘和轮毂交界处附近观察到后缘回流,它与轮毂附近的流入流碰撞,形成轮毂附着漩涡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信