Yuanying Du, Hairong Zhao, Hong Ji, Wenshan Wang, Hongbo Wang, Feiqin Xu
{"title":"Research on lubrication mechanism of plunger pair considering viscosity temperature and pressure effect","authors":"Yuanying Du, Hairong Zhao, Hong Ji, Wenshan Wang, Hongbo Wang, Feiqin Xu","doi":"10.1063/5.0227691","DOIUrl":null,"url":null,"abstract":"Aiming at the key problems such as serious friction and wear and large leakage of aviation piston pumps operating under high-speed and high-pressure harsh conditions, the lubrication characteristics of aviation plunger pumps are studied in this paper. In order to improve the lubrication performance of the plunger pump, as well as its working efficiency and service life, the equations of pressure, the thickness, and the leakage of the plunger pair oil film under the combined actions of viscosity temperature and pressure under pressure flow, shear flow, and cylinder elastic deformation are established. The finite difference method is used to analyze the lubrication characteristics and the leakage of the plunger pair under these four different conditions: considering, respectively, the effect of viscosity temperature and pressure, only considering the effect of viscosity temperature or viscosity pressure, without considering the effect of viscosity temperature and viscosity pressure. As a result, coupled by the effects of viscosity temperature and viscosity pressure, when the temperature increases from 20 to 60 °C, the oil film pressure increases, and the thickness decreases faster. When the temperature increases from 60 to 120 °C, the oil film pressure increases and the thickness decreases slower When the contact length of the plunger pair increases from 17 to 37 mm, the leakage ratio decreases more rapidly, and when it is greater than 37 mm, it decreases more slowly. The following conclusions were obtained: the viscosity of lubricating fluid is greatly affected by temperature and pressure. The viscosity decreases and increases hyperbolically with the increase in temperature and pressure, the maximum oil film pressure when considering the effect of viscosity temperature and pressure was significantly greater than that without considering the viscosity temperature and pressure, and the minimum oil film thickness was much smaller than that without considering the viscosity temperature and pressure. The leakage curve when considering the viscosity temperature and pressure effect was obviously different from when only considering a single factor or not considering the viscosity temperature and pressure effect. The magnitude of leakage in the four cases is: considering the viscosity temperature effect, considering the viscosity temperature and pressure effect, not considering the viscosity temperature and pressure effect, and considering the viscosity pressure effect. This study can provide a reference for the accurate theoretical design and safe and stable operation of the plunger pair in the plunger pump.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0227691","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the key problems such as serious friction and wear and large leakage of aviation piston pumps operating under high-speed and high-pressure harsh conditions, the lubrication characteristics of aviation plunger pumps are studied in this paper. In order to improve the lubrication performance of the plunger pump, as well as its working efficiency and service life, the equations of pressure, the thickness, and the leakage of the plunger pair oil film under the combined actions of viscosity temperature and pressure under pressure flow, shear flow, and cylinder elastic deformation are established. The finite difference method is used to analyze the lubrication characteristics and the leakage of the plunger pair under these four different conditions: considering, respectively, the effect of viscosity temperature and pressure, only considering the effect of viscosity temperature or viscosity pressure, without considering the effect of viscosity temperature and viscosity pressure. As a result, coupled by the effects of viscosity temperature and viscosity pressure, when the temperature increases from 20 to 60 °C, the oil film pressure increases, and the thickness decreases faster. When the temperature increases from 60 to 120 °C, the oil film pressure increases and the thickness decreases slower When the contact length of the plunger pair increases from 17 to 37 mm, the leakage ratio decreases more rapidly, and when it is greater than 37 mm, it decreases more slowly. The following conclusions were obtained: the viscosity of lubricating fluid is greatly affected by temperature and pressure. The viscosity decreases and increases hyperbolically with the increase in temperature and pressure, the maximum oil film pressure when considering the effect of viscosity temperature and pressure was significantly greater than that without considering the viscosity temperature and pressure, and the minimum oil film thickness was much smaller than that without considering the viscosity temperature and pressure. The leakage curve when considering the viscosity temperature and pressure effect was obviously different from when only considering a single factor or not considering the viscosity temperature and pressure effect. The magnitude of leakage in the four cases is: considering the viscosity temperature effect, considering the viscosity temperature and pressure effect, not considering the viscosity temperature and pressure effect, and considering the viscosity pressure effect. This study can provide a reference for the accurate theoretical design and safe and stable operation of the plunger pair in the plunger pump.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves