Advanced attention-based spatial-temporal neural networks for enhanced CO2 water-alternating-gas performance prediction and history matching

IF 4.1 2区 工程技术 Q1 MECHANICS
Yunfeng Xu, Hui Zhao, Ranjith Pathegama Gamage, Qilong Chen, Yuhui Zhou, Xiang Rao
{"title":"Advanced attention-based spatial-temporal neural networks for enhanced CO2 water-alternating-gas performance prediction and history matching","authors":"Yunfeng Xu, Hui Zhao, Ranjith Pathegama Gamage, Qilong Chen, Yuhui Zhou, Xiang Rao","doi":"10.1063/5.0228397","DOIUrl":null,"url":null,"abstract":"This study combines convolutional neural networks, spatial pyramid pooling, and long short-term memory networks (LSTM) with self-attention (SA) mechanisms (abbreviated as CSAL) to address the problem of production dynamics prediction in tight reservoirs during the CO2 water-alternating-gas (CO2-WAG) injection process. By integrating DenseNet and SPP modules, this method effectively captures and processes complex spatial features in tight reservoirs. Concurrently, the LSTM enhanced with SA mechanisms improves the prediction capability of temporal data during the CO2-WAG process. Experimental results demonstrate that the CSAL model performs excellently in both the training and testing phases, achieving a coefficient of determination (R2) exceeding 0.98, significantly enhancing the model's prediction accuracy. Compared to models without attention mechanisms, the CSAL model increases the R2 value in time series prediction by 10%. Furthermore, employing the Ensemble Smoother with Multiple Data Assimilation algorithm, the CSAL model achieves high-precision history matching, significantly reducing the error between predicted values and actual observations. This study validates the application potential and superiority of the CSAL model in the CO2-WAG process in tight reservoirs.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0228397","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study combines convolutional neural networks, spatial pyramid pooling, and long short-term memory networks (LSTM) with self-attention (SA) mechanisms (abbreviated as CSAL) to address the problem of production dynamics prediction in tight reservoirs during the CO2 water-alternating-gas (CO2-WAG) injection process. By integrating DenseNet and SPP modules, this method effectively captures and processes complex spatial features in tight reservoirs. Concurrently, the LSTM enhanced with SA mechanisms improves the prediction capability of temporal data during the CO2-WAG process. Experimental results demonstrate that the CSAL model performs excellently in both the training and testing phases, achieving a coefficient of determination (R2) exceeding 0.98, significantly enhancing the model's prediction accuracy. Compared to models without attention mechanisms, the CSAL model increases the R2 value in time series prediction by 10%. Furthermore, employing the Ensemble Smoother with Multiple Data Assimilation algorithm, the CSAL model achieves high-precision history matching, significantly reducing the error between predicted values and actual observations. This study validates the application potential and superiority of the CSAL model in the CO2-WAG process in tight reservoirs.
基于注意力的先进时空神经网络,用于增强二氧化碳换水气性能预测和历史匹配
本研究将卷积神经网络、空间金字塔池化和具有自我注意(SA)机制的长短期记忆网络(LSTM)(缩写为 CSAL)结合起来,以解决致密油藏在注入 CO2 水-伴生气(CO2-WAG)过程中的生产动态预测问题。通过整合 DenseNet 和 SPP 模块,该方法有效地捕捉并处理了致密油藏中复杂的空间特征。同时,利用 SA 机制增强的 LSTM 提高了对 CO2-WAG 过程中时间数据的预测能力。实验结果表明,CSAL 模型在训练和测试阶段均表现出色,决定系数(R2)超过 0.98,显著提高了模型的预测精度。与没有注意力机制的模型相比,CSAL 模型在时间序列预测方面的 R2 值提高了 10%。此外,CSAL 模型采用了多数据同化的集合平滑算法(Ensemble Smoother with Multiple Data Assimilation),实现了高精度的历史匹配,大大降低了预测值与实际观测值之间的误差。这项研究验证了 CSAL 模型在致密油藏 CO2-WAG 过程中的应用潜力和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信