Xudong Ma, Yang Zhang, Xiaogang Xu, Hui Wang, Tianbo Wang
{"title":"Wing ice accretion prediction based on conditional generation adversarial network","authors":"Xudong Ma, Yang Zhang, Xiaogang Xu, Hui Wang, Tianbo Wang","doi":"10.1063/5.0223205","DOIUrl":null,"url":null,"abstract":"The ice accretion on the aircraft's surface under low temperatures and high humidity is crucial for flight safety. With respect to the limitation of traditional icing simulation methods, it is very hard to predict exact ice profiles, which can extremely affect the flight performance of an aircraft. A conditional generative adversarial network (CGAN) is utilized to rapidly predict ice accretion and reconstruct three-dimensional ice patterns along the leading edge of a wing. The CGAN is trained using experimental data obtained from a wing with varying sweep angles. The results indicate that the CGAN achieves a high level of accuracy, specifically 97.5%, in predicting the similarity of ice shapes in the test set. When assessing the sample feature capture and prediction capability of the predictive model, it is shown that the CGAN exhibits superior predictive performance across different sample sizes.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"157 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0223205","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ice accretion on the aircraft's surface under low temperatures and high humidity is crucial for flight safety. With respect to the limitation of traditional icing simulation methods, it is very hard to predict exact ice profiles, which can extremely affect the flight performance of an aircraft. A conditional generative adversarial network (CGAN) is utilized to rapidly predict ice accretion and reconstruct three-dimensional ice patterns along the leading edge of a wing. The CGAN is trained using experimental data obtained from a wing with varying sweep angles. The results indicate that the CGAN achieves a high level of accuracy, specifically 97.5%, in predicting the similarity of ice shapes in the test set. When assessing the sample feature capture and prediction capability of the predictive model, it is shown that the CGAN exhibits superior predictive performance across different sample sizes.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves