Numerical study on the polarity change process during internal wave shoaling

IF 4.1 2区 工程技术 Q1 MECHANICS
Xueyu Wang, Zehua Wen, Li Zou, Xinyu Ma, Zongbing Yu, Tao Zhao
{"title":"Numerical study on the polarity change process during internal wave shoaling","authors":"Xueyu Wang, Zehua Wen, Li Zou, Xinyu Ma, Zongbing Yu, Tao Zhao","doi":"10.1063/5.0223970","DOIUrl":null,"url":null,"abstract":"Polarity change is an important mechanism for internal waves shoaling. In this study, a numerical model for simulating the real-scale internal wave passing over slope-shelf topography is established based on the Fourier pseudo-spectral method and weakly nonlinear theory. By numerical simulation, the effects of shelf height, initial wave amplitude, and inclination angle on the waveform characteristics and energy properties of the internal wave during its shoaling are investigated. In the polarity change process, the initial internal wave converts into a depression wave and a generated elevation wave behind it. The distance between the peak of the elevation wave and the trough of the depression wave is a key feature to describe the polarity change. In terms of energy properties, the energy ratio of depression and generated elevation waves compared with the initial wave as well as their relative magnitude is mainly determined by the shelf height. In addition, the initial wave amplitude also affects the generation of the elevation wave and the attenuation of the depression wave to a certain extent. The increase in the inclination angle hinders the formation of the elevation wave but has little effect on the depression wave energy.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"7 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0223970","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Polarity change is an important mechanism for internal waves shoaling. In this study, a numerical model for simulating the real-scale internal wave passing over slope-shelf topography is established based on the Fourier pseudo-spectral method and weakly nonlinear theory. By numerical simulation, the effects of shelf height, initial wave amplitude, and inclination angle on the waveform characteristics and energy properties of the internal wave during its shoaling are investigated. In the polarity change process, the initial internal wave converts into a depression wave and a generated elevation wave behind it. The distance between the peak of the elevation wave and the trough of the depression wave is a key feature to describe the polarity change. In terms of energy properties, the energy ratio of depression and generated elevation waves compared with the initial wave as well as their relative magnitude is mainly determined by the shelf height. In addition, the initial wave amplitude also affects the generation of the elevation wave and the attenuation of the depression wave to a certain extent. The increase in the inclination angle hinders the formation of the elevation wave but has little effect on the depression wave energy.
关于内波浅滩过程中极性变化过程的数值研究
极性变化是内波浅滩化的一个重要机制。本研究基于傅立叶伪谱法和弱非线性理论,建立了模拟实际尺度内波经过坡岸地形的数值模型。通过数值模拟,研究了陆架高度、初始波幅和倾斜角对内波在其冲滩过程中的波形特征和能量特性的影响。在极性变化过程中,初始内波转化为凹陷波,并在其后产生抬升波。抬升波的波峰与凹陷波的波谷之间的距离是描述极性变化的关键特征。在能量特性方面,与初波相比,消沉波和生成的高升波的能量比及其相对大小主要由陆架高度决定。此外,初波振幅也会在一定程度上影响高程波的产生和消沉波的衰减。倾角的增加会阻碍仰波的形成,但对消沉波的能量影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信