On Substochastic Inverse Eigenvalue Problems with the Corresponding Eigenvector Constraints

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Yujie Liu, Dacheng Yao, Hanqin Zhang
{"title":"On Substochastic Inverse Eigenvalue Problems with the Corresponding Eigenvector Constraints","authors":"Yujie Liu, Dacheng Yao, Hanqin Zhang","doi":"10.1137/23m1547305","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1689-1719, September 2024. <br/> Abstract. We consider the inverse eigenvalue problem of constructing a substochastic matrix from the given spectrum parameters with the corresponding eigenvector constraints. This substochastic inverse eigenvalue problem (SstIEP) with the specific eigenvector constraints is formulated into a nonconvex optimization problem (NcOP). The solvability for SstIEP with the specific eigenvector constraints is equivalent to identifying the attainability of a zero optimal value for the formulated NcOP. When the optimal objective value is zero, the corresponding optimal solution to the formulated NcOP is just the substochastic matrix that we wish to construct. We develop the alternating minimization algorithm to solve the formulated NcOP, and its convergence is established by developing a novel method to obtain the boundedness of the optimal solution. Some numerical experiments are conducted to demonstrate the efficiency of the proposed method.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"23 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1547305","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1689-1719, September 2024.
Abstract. We consider the inverse eigenvalue problem of constructing a substochastic matrix from the given spectrum parameters with the corresponding eigenvector constraints. This substochastic inverse eigenvalue problem (SstIEP) with the specific eigenvector constraints is formulated into a nonconvex optimization problem (NcOP). The solvability for SstIEP with the specific eigenvector constraints is equivalent to identifying the attainability of a zero optimal value for the formulated NcOP. When the optimal objective value is zero, the corresponding optimal solution to the formulated NcOP is just the substochastic matrix that we wish to construct. We develop the alternating minimization algorithm to solve the formulated NcOP, and its convergence is established by developing a novel method to obtain the boundedness of the optimal solution. Some numerical experiments are conducted to demonstrate the efficiency of the proposed method.
论具有相应特征向量约束条件的亚随机反特征值问题
SIAM 矩阵分析与应用期刊》,第 45 卷第 3 期,第 1689-1719 页,2024 年 9 月。 摘要。我们考虑从给定的频谱参数和相应的特征向量约束构造一个亚弹性矩阵的逆特征值问题。这个带有特定特征向量约束的亚弹性逆特征值问题(SstIEP)被表述为一个非凸优化问题(NcOP)。带有特定特征向量约束的 SstIEP 的可解性等同于确定所制定的 NcOP 的最优值是否为零。当最优目标值为零时,所制定的 NcOP 的相应最优解就是我们希望构建的亚弹性矩阵。我们开发了交替最小化算法来求解所配制的 NcOP,并通过开发一种新方法来获得最优解的有界性,从而确定了该算法的收敛性。我们进行了一些数值实验来证明所提方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信