TSELM: Target Speaker Extraction using Discrete Tokens and Language Models

Beilong Tang, Bang Zeng, Ming Li
{"title":"TSELM: Target Speaker Extraction using Discrete Tokens and Language Models","authors":"Beilong Tang, Bang Zeng, Ming Li","doi":"arxiv-2409.07841","DOIUrl":null,"url":null,"abstract":"We propose TSELM, a novel target speaker extraction network that leverages\ndiscrete tokens and language models. TSELM utilizes multiple discretized layers\nfrom WavLM as input tokens and incorporates cross-attention mechanisms to\nintegrate target speaker information. Language models are employed to capture\nthe sequence dependencies, while a scalable HiFi-GAN is used to reconstruct the\naudio from the tokens. By applying a cross-entropy loss, TSELM models the\nprobability distribution of output tokens, thus converting the complex\nregression problem of audio generation into a classification task. Experimental\nresults show that TSELM achieves excellent results in speech quality and\ncomparable results in speech intelligibility.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose TSELM, a novel target speaker extraction network that leverages discrete tokens and language models. TSELM utilizes multiple discretized layers from WavLM as input tokens and incorporates cross-attention mechanisms to integrate target speaker information. Language models are employed to capture the sequence dependencies, while a scalable HiFi-GAN is used to reconstruct the audio from the tokens. By applying a cross-entropy loss, TSELM models the probability distribution of output tokens, thus converting the complex regression problem of audio generation into a classification task. Experimental results show that TSELM achieves excellent results in speech quality and comparable results in speech intelligibility.
TSELM:使用离散时标和语言模型提取目标发言人
我们提出的 TSELM 是一种利用离散标记和语言模型的新型目标发言人提取网络。TSELM 利用来自 WavLM 的多个离散层作为输入标记,并结合交叉注意机制来整合目标扬声器信息。语言模型用于捕捉序列依赖关系,而可扩展的 HiFi-GAN 则用于从标记重建音频。通过应用交叉熵损失,TSELM 对输出标记的概率分布进行建模,从而将复杂的音频生成回归问题转换为分类任务。实验结果表明,TSELM 在语音质量和语音可懂度方面都取得了优异的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信