The $$*$$ -Exponential as a Covering Map

IF 0.6 4区 数学 Q3 MATHEMATICS
Amedeo Altavilla, Samuele Mongodi
{"title":"The $$*$$ -Exponential as a Covering Map","authors":"Amedeo Altavilla, Samuele Mongodi","doi":"10.1007/s40315-024-00558-z","DOIUrl":null,"url":null,"abstract":"<p>We employ tools from complex analysis to construct the <span>\\(*\\)</span>-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the <span>\\(*\\)</span>-exponential; we establish sufficient conditions for the <span>\\(*\\)</span>-product of two <span>\\(*\\)</span>-exponentials to also be a <span>\\(*\\)</span>-exponential; we calculate the slice derivative of the <span>\\(*\\)</span>-exponential of a regular function.\n</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"23 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00558-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We employ tools from complex analysis to construct the \(*\)-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the \(*\)-exponential; we establish sufficient conditions for the \(*\)-product of two \(*\)-exponentials to also be a \(*\)-exponential; we calculate the slice derivative of the \(*\)-exponential of a regular function.

作为覆盖图的 $$*$$ - 指数
我们运用复分析的工具来构造四元片正则函数的(*)-对数。我们的方法使我们能够实现三个主要目标:我们计算了与\(*\)-指数相关的单色性;我们建立了两个\(*\)-指数的\(*\)-乘积也是\(*\)-指数的充分条件;我们计算了正则函数的\(*\)-指数的切片导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信