Hilbert-Type Operators Acting on Bergman Spaces

Pub Date : 2024-09-02 DOI:10.1007/s40315-024-00560-5
Tanausú Aguilar-Hernández, Petros Galanopoulos, Daniel Girela
{"title":"Hilbert-Type Operators Acting on Bergman Spaces","authors":"Tanausú Aguilar-Hernández, Petros Galanopoulos, Daniel Girela","doi":"10.1007/s40315-024-00560-5","DOIUrl":null,"url":null,"abstract":"<p>If <span>\\(\\mu \\)</span> is a positive Borel measure on the interval [0, 1) we let <span>\\({\\mathcal {H}}_\\mu \\)</span> be the Hankel matrix <span>\\({\\mathcal {H}}_\\mu =(\\mu _{n, k})_{n,k\\ge 0}\\)</span> with entries <span>\\(\\mu _{n, k}=\\mu _{n+k}\\)</span>, where, for <span>\\(n\\,=\\,0, 1, 2, \\ldots \\)</span>, <span>\\(\\mu _n\\)</span> denotes the moment of order <i>n</i> of <span>\\(\\mu \\)</span>. This matrix formally induces an operator, called also <span>\\({\\mathcal {H}}_\\mu \\)</span>, on the space of all analytic functions in the unit disc <span>\\({\\mathbb {D}}\\)</span> as follows: If <i>f</i> is an analytic function in <span>\\({\\mathbb {D}}\\)</span>, <span>\\(f(z)=\\sum _{k=0}^\\infty a_kz^k\\)</span>, <span>\\(z\\in {{\\mathbb {D}}}\\)</span>, <span>\\({\\mathcal {H}}_\\mu (f)\\)</span> is formally defined by </p><span>$$\\begin{aligned} {\\mathcal {H}}_\\mu (f)(z)= \\sum _{n=0}^{\\infty }\\left( \\sum _{k=0}^{\\infty } \\mu _{n+k}{a_k}\\right) z^n,\\quad z\\in {\\mathbb {D}}. \\end{aligned}$$</span><p>This is a natural generalization of the classical Hilbert operator. This paper is devoted to studying the operators <span>\\(H_\\mu \\)</span> acting on the Bergman spaces <span>\\(A^p\\)</span>, <span>\\(1\\le p&lt;\\infty \\)</span>. Among other results, we give a complete characterization of those <span>\\(\\mu \\)</span> for which <span>\\({\\mathcal {H}}_\\mu \\)</span> is bounded or compact on the space <span>\\(A^p\\)</span> when <i>p</i> is either 1 or greater than 2. We also give a number of results concerning the boundedness and compactness of <span>\\(\\mathcal H_\\mu \\)</span> on <span>\\(A^p\\)</span> for the other values of <i>p</i>, as well as on its membership in the Schatten classes <span>\\({\\mathcal {S}}_p(A^2)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00560-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If \(\mu \) is a positive Borel measure on the interval [0, 1) we let \({\mathcal {H}}_\mu \) be the Hankel matrix \({\mathcal {H}}_\mu =(\mu _{n, k})_{n,k\ge 0}\) with entries \(\mu _{n, k}=\mu _{n+k}\), where, for \(n\,=\,0, 1, 2, \ldots \), \(\mu _n\) denotes the moment of order n of \(\mu \). This matrix formally induces an operator, called also \({\mathcal {H}}_\mu \), on the space of all analytic functions in the unit disc \({\mathbb {D}}\) as follows: If f is an analytic function in \({\mathbb {D}}\), \(f(z)=\sum _{k=0}^\infty a_kz^k\), \(z\in {{\mathbb {D}}}\), \({\mathcal {H}}_\mu (f)\) is formally defined by

$$\begin{aligned} {\mathcal {H}}_\mu (f)(z)= \sum _{n=0}^{\infty }\left( \sum _{k=0}^{\infty } \mu _{n+k}{a_k}\right) z^n,\quad z\in {\mathbb {D}}. \end{aligned}$$

This is a natural generalization of the classical Hilbert operator. This paper is devoted to studying the operators \(H_\mu \) acting on the Bergman spaces \(A^p\), \(1\le p<\infty \). Among other results, we give a complete characterization of those \(\mu \) for which \({\mathcal {H}}_\mu \) is bounded or compact on the space \(A^p\) when p is either 1 or greater than 2. We also give a number of results concerning the boundedness and compactness of \(\mathcal H_\mu \) on \(A^p\) for the other values of p, as well as on its membership in the Schatten classes \({\mathcal {S}}_p(A^2)\).

分享
查看原文
作用于伯格曼空间的希尔伯特型算子
如果 \(\mu \)是区间[0, 1]上的正博尔量纲,我们让 \({\mathcal {H}}_\mu \)是汉克尔矩阵 \({\mathcal {H}}_\mu =(\mu _{n、k})_{n,k\ge 0}\),其中,对于 \(n\,=\,0,1,2,\ldots\),\(\mu _n\)表示\(\mu \)的n阶矩。这个矩阵在单位圆盘中所有解析函数的空间上形式上诱导了一个算子,也叫做 \({\mathcal {H}}_\mu \),如下所示:If f is an analytic function in \({\mathbb {D}}\), \(f(z)=sum _{k=0}^\infty a_kz^k\), \(z\in {{\mathbb {D}}\)、\({\mathcal {H}}_\mu (f)\) 的正式定义是 $$\begin{aligned} {\mathcal {H}}_\mu (f)(z)= \sum _{n=0}^{\infty }\left( \sum _{k=0}^{\infty } \mu _{n+k}{a_k}\right) z^n,\quad zin {\mathbb {D}}.\end{aligned}$$这是经典希尔伯特算子的自然广义化。本文致力于研究作用于伯格曼空间(A^p\ )、(1\le p<\infty \)的算子(H_\mu \)。在其他结果中,我们给出了当p为1或大于2时,\({\mathcal {H}}_\mu \)在空间\(A^p\)上是有界或紧凑的那些\(\mu \)的完整特征。我们还给出了一些关于其他 p 值时 \(\mathcal H_\mu \) 在 \(A^p\) 上的有界性和紧凑性的结果,以及关于它在 Schatten 类 \({mathcal {S}}_p(A^2)\) 中的成员资格的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信