Janssen 2.0: Audio Inpainting in the Time-frequency Domain

Ondřej Mokrý, Peter Balušík, Pavel Rajmic
{"title":"Janssen 2.0: Audio Inpainting in the Time-frequency Domain","authors":"Ondřej Mokrý, Peter Balušík, Pavel Rajmic","doi":"arxiv-2409.06392","DOIUrl":null,"url":null,"abstract":"The paper focuses on inpainting missing parts of an audio signal spectrogram.\nFirst, a recent successful approach based on an untrained neural network is\nrevised and its several modifications are proposed, improving the\nsignal-to-noise ratio of the restored audio. Second, the Janssen algorithm, the\nautoregression-based state-of-the-art for time-domain audio inpainting, is\nadapted for the time-frequency setting. This novel method, coined Janssen-TF,\nis compared to the neural network approach using both objective metrics and a\nsubjective listening test, proving Janssen-TF to be superior in all the\nconsidered measures.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper focuses on inpainting missing parts of an audio signal spectrogram. First, a recent successful approach based on an untrained neural network is revised and its several modifications are proposed, improving the signal-to-noise ratio of the restored audio. Second, the Janssen algorithm, the autoregression-based state-of-the-art for time-domain audio inpainting, is adapted for the time-frequency setting. This novel method, coined Janssen-TF, is compared to the neural network approach using both objective metrics and a subjective listening test, proving Janssen-TF to be superior in all the considered measures.
扬森 2.0:时频域音频绘制
首先,本文对最近一种基于未训练神经网络的成功方法进行了修订,并提出了若干修改意见,从而提高了还原音频的信噪比。其次,Janssen 算法是基于回归的时域音频绘制的最先进算法,该算法适用于时频设置。这种被称为 Janssen-TF 的新方法使用客观指标和主观听力测试与神经网络方法进行了比较,证明 Janssen-TF 在所有考虑的指标上都更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信