On Uniformity Exponents of $$\varphi $$ -Uniform Domains

Pub Date : 2024-09-11 DOI:10.1007/s40315-024-00561-4
Yahui Sheng, Fan Wen, Kai Zhan
{"title":"On Uniformity Exponents of $$\\varphi $$ -Uniform Domains","authors":"Yahui Sheng, Fan Wen, Kai Zhan","doi":"10.1007/s40315-024-00561-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(G\\subsetneq {\\mathbb {R}}^n\\)</span> be a domain, where <span>\\(n\\ge 2\\)</span>. Let <span>\\(k_G\\)</span> and <span>\\(j_G\\)</span> be the quasihyperbolic metric and the distance ratio metric on <i>G</i>, respectively. In the present paper, we prove that the identity map of <span>\\((G,k_G)\\)</span> onto <span>\\((G,j_G)\\)</span> is quasisymmetric if and only if it is bilipschitz. To classify domains of <span>\\({\\mathbb {R}}^n\\)</span> into various types according to the behaviors of their quasihyperbolic metrics, we define a uniformity exponent for every proper subdomain of <span>\\({\\mathbb {R}}^n\\)</span> and prove that this exponent may assume any value in <span>\\(\\{0\\}\\cup [1,\\infty ]\\)</span>. Moreover, we study the properties of domains of uniformity exponent 1 and show by an example that such a domain may be neither quasiconvex nor accessible.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00561-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G\subsetneq {\mathbb {R}}^n\) be a domain, where \(n\ge 2\). Let \(k_G\) and \(j_G\) be the quasihyperbolic metric and the distance ratio metric on G, respectively. In the present paper, we prove that the identity map of \((G,k_G)\) onto \((G,j_G)\) is quasisymmetric if and only if it is bilipschitz. To classify domains of \({\mathbb {R}}^n\) into various types according to the behaviors of their quasihyperbolic metrics, we define a uniformity exponent for every proper subdomain of \({\mathbb {R}}^n\) and prove that this exponent may assume any value in \(\{0\}\cup [1,\infty ]\). Moreover, we study the properties of domains of uniformity exponent 1 and show by an example that such a domain may be neither quasiconvex nor accessible.

Abstract Image

分享
查看原文
论 $$\varphi $$ -Uniform 域的均匀性指数
让(G/subsetneq {\mathbb {R}}^n\) 是一个域,其中(n/ge 2\).让 \(k_G\) 和 \(j_G\) 分别是 G 上的准双曲度量和距离比度量。在本文中,我们将证明当且仅当 \((G,k_G)\ 到 \((G,j_G)\) 的标识映射是双双曲的时候,它是准对称的。为了根据准双曲度量的行为将 \({\mathbb {R}}^n\) 的域划分为各种类型,我们为 \({\mathbb {R}}^n\) 的每个适当子域定义了一个均匀性指数,并证明这个指数可以在 \({0\}\cup [1,\infty ]\) 中取任意值。此外,我们还研究了均匀性指数为 1 的域的性质,并通过一个例子证明了这样的域可能既不是准凸的,也不是可及的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信