A feedback control approach to convex optimization with inequality constraints

V. Cerone, S. M. Fosson, S. Pirrera, D. Regruto
{"title":"A feedback control approach to convex optimization with inequality constraints","authors":"V. Cerone, S. M. Fosson, S. Pirrera, D. Regruto","doi":"arxiv-2409.07168","DOIUrl":null,"url":null,"abstract":"We propose a novel continuous-time algorithm for inequality-constrained\nconvex optimization inspired by proportional-integral control. Unlike the\npopular primal-dual gradient dynamics, our method includes a proportional term\nto control the primal variable through the Lagrange multipliers. This approach\nhas both theoretical and practical advantages. On the one hand, it simplifies\nthe proof of the exponential convergence in the case of smooth, strongly convex\nproblems, with a more straightforward assessment of the convergence rate\nconcerning prior literature. On the other hand, through several examples, we\nshow that the proposed algorithm converges faster than primal-dual gradient\ndynamics. This paper aims to illustrate these points by thoroughly analyzing\nthe algorithm convergence and discussing some numerical simulations.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel continuous-time algorithm for inequality-constrained convex optimization inspired by proportional-integral control. Unlike the popular primal-dual gradient dynamics, our method includes a proportional term to control the primal variable through the Lagrange multipliers. This approach has both theoretical and practical advantages. On the one hand, it simplifies the proof of the exponential convergence in the case of smooth, strongly convex problems, with a more straightforward assessment of the convergence rate concerning prior literature. On the other hand, through several examples, we show that the proposed algorithm converges faster than primal-dual gradient dynamics. This paper aims to illustrate these points by thoroughly analyzing the algorithm convergence and discussing some numerical simulations.
带不平等约束的凸优化反馈控制方法
受比例积分控制的启发,我们提出了一种用于不等式约束凸优化的新型连续时间算法。与流行的基元-双梯度动力学不同,我们的方法包含一个比例项,通过拉格朗日乘法器控制基元变量。这种方法具有理论和实践上的双重优势。一方面,它简化了平滑强凸问题的指数收敛证明,对收敛率的评估与之前的文献相比更加直接。另一方面,通过几个例子,我们表明所提出的算法比原始-双梯度动力学收敛得更快。本文旨在通过深入分析算法收敛性和讨论一些数值模拟来说明这些观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信