Equilibria and Their Stability Do Not Depend on the Control Barrier Function in Safe Optimization-Based Control

Yiting Chen, Pol Mestres, Jorge Cortes, Emiliano Dall'Anese
{"title":"Equilibria and Their Stability Do Not Depend on the Control Barrier Function in Safe Optimization-Based Control","authors":"Yiting Chen, Pol Mestres, Jorge Cortes, Emiliano Dall'Anese","doi":"arxiv-2409.06808","DOIUrl":null,"url":null,"abstract":"Control barrier functions (CBFs) play a critical role in the design of safe\noptimization-based controllers for control-affine systems. Given a CBF\nassociated with a desired ``safe'' set, the typical approach consists in\nembedding CBF-based constraints into the optimization problem defining the\ncontrol law to enforce forward invariance of the safe set. While this approach\neffectively guarantees safety for a given CBF, the CBF-based control law can\nintroduce undesirable equilibrium points (i.e., points that are not equilibria\nof the original system); open questions remain on how the choice of CBF\ninfluences the number and locations of undesirable equilibria and, in general,\nthe dynamics of the closed-loop system. This paper investigates how the choice\nof CBF impacts the dynamics of the closed-loop system and shows that: (i) The\nCBF does not affect the number, location, and (local) stability properties of\nthe equilibria in the interior of the safe set; (ii) undesirable equilibria\nonly appear on the boundary of the safe set; and, (iii) the number and location\nof undesirable equilibria for the closed-loop system do not depend of the\nchoice of the CBF. Additionally, for the well-established safety filters and\ncontrollers based on both CBF and control Lyapunov functions (CLFs), we show\nthat the stability properties of equilibria of the closed-loop system are\nindependent of the choice of the CBF and of the associated extended class-K\nfunction.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Control barrier functions (CBFs) play a critical role in the design of safe optimization-based controllers for control-affine systems. Given a CBF associated with a desired ``safe'' set, the typical approach consists in embedding CBF-based constraints into the optimization problem defining the control law to enforce forward invariance of the safe set. While this approach effectively guarantees safety for a given CBF, the CBF-based control law can introduce undesirable equilibrium points (i.e., points that are not equilibria of the original system); open questions remain on how the choice of CBF influences the number and locations of undesirable equilibria and, in general, the dynamics of the closed-loop system. This paper investigates how the choice of CBF impacts the dynamics of the closed-loop system and shows that: (i) The CBF does not affect the number, location, and (local) stability properties of the equilibria in the interior of the safe set; (ii) undesirable equilibria only appear on the boundary of the safe set; and, (iii) the number and location of undesirable equilibria for the closed-loop system do not depend of the choice of the CBF. Additionally, for the well-established safety filters and controllers based on both CBF and control Lyapunov functions (CLFs), we show that the stability properties of equilibria of the closed-loop system are independent of the choice of the CBF and of the associated extended class-K function.
基于优化的安全控制中的均衡点及其稳定性不取决于控制障碍函数
控制障碍函数(CBF)在设计基于安全优化的控制-辅助系统控制器中起着至关重要的作用。给定一个与所需 "安全 "集相关的 CBF,典型的方法是将基于 CBF 的约束嵌入到定义控制法的优化问题中,以强制执行安全集的前向不变性。虽然这种方法能有效保证给定 CBF 的安全性,但基于 CBF 的控制法则可能会引入不理想的平衡点(即非原始系统平衡点);CBF 的选择如何影响不理想平衡点的数量和位置,以及闭环系统的一般动态,这些问题仍有待解决。本文研究了 CBF 的选择如何影响闭环系统的动力学,结果表明(i) CBF 不会影响安全集内部平衡点的数量、位置和(局部)稳定性;(ii) 不良平衡点只会出现在安全集的边界上;(iii) 闭环系统不良平衡点的数量和位置与 CBF 的选择无关。此外,对于基于 CBF 和控制 Lyapunov 函数(CLF)的成熟安全过滤器和控制器,我们证明闭环系统平衡点的稳定性与 CBF 和相关扩展类 K 函数的选择无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信