Covariance Intersection-based Invariant Kalman Filtering(DInCIKF) for Distributed Pose Estimation

Haoying Li, Xinghan Li, Shuaiting Huang, Chao yang, Junfeng Wu
{"title":"Covariance Intersection-based Invariant Kalman Filtering(DInCIKF) for Distributed Pose Estimation","authors":"Haoying Li, Xinghan Li, Shuaiting Huang, Chao yang, Junfeng Wu","doi":"arxiv-2409.07933","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to distributed pose estimation in the\nmulti-agent system based on an invariant Kalman filter with covariance\nintersection. Our method models uncertainties using Lie algebra and applies\nobject-level observations within Lie groups, which have practical application\nvalue. We integrate covariance intersection to handle estimates that are\ncorrelated and use the invariant Kalman filter for merging independent data\nsources. This strategy allows us to effectively tackle the complex correlations\nof cooperative localization among agents, ensuring our estimates are neither\ntoo conservative nor overly confident. Additionally, we examine the consistency\nand stability of our algorithm, providing evidence of its reliability and\neffectiveness in managing multi-agent systems.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to distributed pose estimation in the multi-agent system based on an invariant Kalman filter with covariance intersection. Our method models uncertainties using Lie algebra and applies object-level observations within Lie groups, which have practical application value. We integrate covariance intersection to handle estimates that are correlated and use the invariant Kalman filter for merging independent data sources. This strategy allows us to effectively tackle the complex correlations of cooperative localization among agents, ensuring our estimates are neither too conservative nor overly confident. Additionally, we examine the consistency and stability of our algorithm, providing evidence of its reliability and effectiveness in managing multi-agent systems.
基于协方差交叉的卡尔曼滤波(DInCIKF)用于分布式姿势估计
本文提出了一种基于协方差交集不变卡尔曼滤波器的多代理系统分布式姿态估计新方法。我们的方法使用李代数对不确定性进行建模,并在具有实际应用价值的李群中应用对象级观测。我们整合了协方差交集来处理相关的估计值,并使用不变卡尔曼滤波器来合并独立的数据源。这种策略使我们能够有效地处理代理间合作定位的复杂相关性,确保我们的估计既不过于保守,也不过于自信。此外,我们还检验了算法的一致性和稳定性,为其在多代理系统管理中的可靠性和有效性提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信