The Heisenberg Group Action on the Siegel Domain and the Structure of Bergman Spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Julio A. Barrera-Reyes, Raúl Quiroga-Barranco
{"title":"The Heisenberg Group Action on the Siegel Domain and the Structure of Bergman Spaces","authors":"Julio A. Barrera-Reyes, Raúl Quiroga-Barranco","doi":"10.1007/s00020-024-02776-5","DOIUrl":null,"url":null,"abstract":"<p>We study the biholomorphic action of the Heisenberg group <span>\\(\\mathbb {H}_n\\)</span> on the Siegel domain <span>\\(D_{n+1}\\)</span> (<span>\\(n \\ge 1\\)</span>). Such <span>\\(\\mathbb {H}_n\\)</span>-action allows us to obtain decompositions of both <span>\\(D_{n+1}\\)</span> and the weighted Bergman spaces <span>\\(\\mathcal {A}^2_\\lambda (D_{n+1})\\)</span> (<span>\\(\\lambda &gt; -1\\)</span>). Through the use of symplectic geometry we construct a natural set of coordinates for <span>\\(D_{n+1}\\)</span> adapted to <span>\\(\\mathbb {H}_n\\)</span>. This yields a useful decomposition of the domain <span>\\(D_{n+1}\\)</span>. The latter is then used to compute a decomposition of the Bergman spaces <span>\\(\\mathcal {A}^2_\\lambda (D_{n+1})\\)</span> (<span>\\(\\lambda &gt; -1\\)</span>) as direct integrals of Fock spaces. This effectively shows the existence of an interplay between Bergman spaces and Fock spaces through the Heisenberg group <span>\\(\\mathbb {H}_n\\)</span>. As an application, we consider <span>\\(\\mathcal {T}^{(\\lambda )}(L^\\infty (D_{n+1})^{\\mathbb {H}_n})\\)</span> the <span>\\(C^*\\)</span>-algebra acting on the weighted Bergman space <span>\\(\\mathcal {A}^2_\\lambda (D_{n+1})\\)</span> (<span>\\(\\lambda &gt; -1\\)</span>) generated by Toeplitz operators whose symbols belong to <span>\\(L^\\infty (D_{n+1})^{\\mathbb {H}_n}\\)</span> (essentially bounded and <span>\\(\\mathbb {H}_n\\)</span>-invariant). We prove that <span>\\(\\mathcal {T}^{(\\lambda )}(L^\\infty (D_{n+1})^{\\mathbb {H}_n})\\)</span> is commutative and isomorphic to <span>\\(\\textrm{VSO}(\\mathbb {R}_+)\\)</span> (very slowly oscillating functions on <span>\\(\\mathbb {R}_+\\)</span>), for every <span>\\(\\lambda &gt; -1\\)</span> and <span>\\(n \\ge 1\\)</span>.</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"9 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02776-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the biholomorphic action of the Heisenberg group \(\mathbb {H}_n\) on the Siegel domain \(D_{n+1}\) (\(n \ge 1\)). Such \(\mathbb {H}_n\)-action allows us to obtain decompositions of both \(D_{n+1}\) and the weighted Bergman spaces \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)). Through the use of symplectic geometry we construct a natural set of coordinates for \(D_{n+1}\) adapted to \(\mathbb {H}_n\). This yields a useful decomposition of the domain \(D_{n+1}\). The latter is then used to compute a decomposition of the Bergman spaces \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)) as direct integrals of Fock spaces. This effectively shows the existence of an interplay between Bergman spaces and Fock spaces through the Heisenberg group \(\mathbb {H}_n\). As an application, we consider \(\mathcal {T}^{(\lambda )}(L^\infty (D_{n+1})^{\mathbb {H}_n})\) the \(C^*\)-algebra acting on the weighted Bergman space \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)) generated by Toeplitz operators whose symbols belong to \(L^\infty (D_{n+1})^{\mathbb {H}_n}\) (essentially bounded and \(\mathbb {H}_n\)-invariant). We prove that \(\mathcal {T}^{(\lambda )}(L^\infty (D_{n+1})^{\mathbb {H}_n})\) is commutative and isomorphic to \(\textrm{VSO}(\mathbb {R}_+)\) (very slowly oscillating functions on \(\mathbb {R}_+\)), for every \(\lambda > -1\) and \(n \ge 1\).

西格尔域上的海森堡群作用与伯格曼空间的结构
我们研究了海森堡群在西格尔域 \(D_{n+1}\) (\(n \ge 1\)) 上的双(holomorphic)作用。这样的(\mathbb {H}_n\)作用使我们可以得到(\(D_{n+1}\)和加权伯格曼空间(\(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)) 的分解。通过使用交映几何学,我们为\(D_{n+1}\)构建了一套适应于\(\mathbb {H}_n\)的自然坐标。这样就得到了一个有用的域(D_{n+1}\)分解。然后用后者来计算伯格曼空间的分解 \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda > -1\)) 作为福克空间的直接积分。这有效地说明了通过海森堡群 \(\mathbb {H}_n\),伯格曼空间和福克空间之间存在相互作用。作为一个应用,我们考虑到 \(\mathcal {T}^{(\lambda )}(L^\infty (D_{n+1})^{\mathbb {H}_n})\)是作用于加权伯格曼空间 \(\mathcal {A}^2_\lambda (D_{n+1})\) (\(\lambda >. -1/))的 \(C^*\)-代数;-本质上是有界的和(\mathbb {H}_n\)不变的)。我们证明\(\mathcal {T}^{(\lambda )}(L^\infty (D_{n+1})^{mathbb {H}_n}))是交换的,并且与\(\textrm{VSO}(\mathbb {R}_+))同构(\(\mathbb {R}_+\)上的极慢振荡函数)、for every \(\lambda >;-和 \(n ge 1\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信