{"title":"Enhancement of Circularly Polarized Luminescence Brightness of Schiff‐base Diphenylboron and 9‐Borafluoren‐9‐yl Complexes","authors":"Masahiro Ikeshita, Shinya Watanabe, Taichi Oka, Ayumu Kuroda, Seika Suzuki, Daiya Suzuki, Yoshitane Imai, Takashi Tsuno","doi":"10.1002/cptc.202400265","DOIUrl":null,"url":null,"abstract":"A series of diphenylboron and 9‐borafluoren‐9‐yl complexes with chiral Schiff‐base ligands was synthesized and characterized by NMR spectroscopy. X‐ray diffraction analysis revealed that their boron centers were adapted to tetrahedral coordination geometry. Although boron complexes with salicylideneimine backbones exhibited a weak circularly polarized luminescence (CPL), the CPL brightness (BCPL) was enhanced more than 9‐fold by the π‐extension of the Schiff base ligands. Time‐resolved emission decay analysis and theoretical calculations based on density functional theory (DFT) were conducted to further understand their luminescent properties.","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cptc.202400265","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A series of diphenylboron and 9‐borafluoren‐9‐yl complexes with chiral Schiff‐base ligands was synthesized and characterized by NMR spectroscopy. X‐ray diffraction analysis revealed that their boron centers were adapted to tetrahedral coordination geometry. Although boron complexes with salicylideneimine backbones exhibited a weak circularly polarized luminescence (CPL), the CPL brightness (BCPL) was enhanced more than 9‐fold by the π‐extension of the Schiff base ligands. Time‐resolved emission decay analysis and theoretical calculations based on density functional theory (DFT) were conducted to further understand their luminescent properties.