{"title":"Quality by Design-Steered Development of Stealth Liposomal Formulation of Everolimus: A Systematic Optimization and Evaluation","authors":"Simranjeet Kaur, Rajveer Sidhu, Dilpreet Singh","doi":"10.2174/0113892002322171240821104152","DOIUrl":null,"url":null,"abstract":"Background: Everolimus is a drug approved for the treatment of breast cancer with HR+ and advanced breast cancer reoccurring in postmenopausal women. The oral administration of EVE has been observed to have low oral bioavailability and severe epithelial cutaneous events that include rashes and lip ulceration followed by mouth ulceration after oral administration. Aim: The present research aimed to enhance the bioavailability by loading the EVE into a stealth liposomal formulation (S-EVE-LIPO) intended for intravenous administration. Methods: The surface of the liposomes was modified with vitamin E TPGS, which prolongs the systemic circulation of the drug and provides additional benefits like inhibition of the P-gp efflux pump and acting synergistically with EVE. Results: The formulation was prepared using the thin film hydration method and optimized using a D-optimal mixture design. ANOVA suggested the significance of the proposed mathematic model, and the optimized formulation was generated by design expert software. The optimized formulation (S-EVE-LIPO) was observed with nanometric size (99.5 ± 3.70 nm) with higher encapsulation efficacy (81.5 ± 2.86 %). The S-EVELIPO formulation indicated a sustained release profile as 90.22% drug release was observed in 48 h, whereas the formulation without vitamin E TPGS (EVE-LIPO) released only 74.15 drugs in 24 hours. In vitro cytotoxicity study suggested that the presence of vitamin E TPGS lowers the IC50 value (54.2 ± 1.69), increases the cellular uptake of the formulation, also increases the generation of ROS, and shows better hemocompatibility. result: The formulation was prepared by thin film hydration method and optimized by D-optimal mixture design. ANOVA suggested significancy of the proposed mathematic model and optimized formulation was generated by design expert software The optimized formulation (S-EVE-LIPO) has observed with nanometric size (99.5 ± 3.70 nm) with higher encapsulation efficacy (81.5 ± 2.86 %). The S-EVE-LIPO formulation indicated with a sustained release profile as 90.22% drug release was observed in 48 h, whereas the formulation without vitamin E TPGS (EVE-LIPO) releases only 74.15 drug in 24 hours. In vitro cytotoxicity study suggested that the presence of vitamin E TPGS lowers the IC50 value (54.2 ± 1.69), increases the cellular uptake of the formulation, also increases the generation of ROS and shows better hemocompatibility. Conclusion: Vitamin E TPGS could be set as a vital additive to improve therapeutic efficacy and reduce offsite toxicity and dosing frequency.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"37 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002322171240821104152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Everolimus is a drug approved for the treatment of breast cancer with HR+ and advanced breast cancer reoccurring in postmenopausal women. The oral administration of EVE has been observed to have low oral bioavailability and severe epithelial cutaneous events that include rashes and lip ulceration followed by mouth ulceration after oral administration. Aim: The present research aimed to enhance the bioavailability by loading the EVE into a stealth liposomal formulation (S-EVE-LIPO) intended for intravenous administration. Methods: The surface of the liposomes was modified with vitamin E TPGS, which prolongs the systemic circulation of the drug and provides additional benefits like inhibition of the P-gp efflux pump and acting synergistically with EVE. Results: The formulation was prepared using the thin film hydration method and optimized using a D-optimal mixture design. ANOVA suggested the significance of the proposed mathematic model, and the optimized formulation was generated by design expert software. The optimized formulation (S-EVE-LIPO) was observed with nanometric size (99.5 ± 3.70 nm) with higher encapsulation efficacy (81.5 ± 2.86 %). The S-EVELIPO formulation indicated a sustained release profile as 90.22% drug release was observed in 48 h, whereas the formulation without vitamin E TPGS (EVE-LIPO) released only 74.15 drugs in 24 hours. In vitro cytotoxicity study suggested that the presence of vitamin E TPGS lowers the IC50 value (54.2 ± 1.69), increases the cellular uptake of the formulation, also increases the generation of ROS, and shows better hemocompatibility. result: The formulation was prepared by thin film hydration method and optimized by D-optimal mixture design. ANOVA suggested significancy of the proposed mathematic model and optimized formulation was generated by design expert software The optimized formulation (S-EVE-LIPO) has observed with nanometric size (99.5 ± 3.70 nm) with higher encapsulation efficacy (81.5 ± 2.86 %). The S-EVE-LIPO formulation indicated with a sustained release profile as 90.22% drug release was observed in 48 h, whereas the formulation without vitamin E TPGS (EVE-LIPO) releases only 74.15 drug in 24 hours. In vitro cytotoxicity study suggested that the presence of vitamin E TPGS lowers the IC50 value (54.2 ± 1.69), increases the cellular uptake of the formulation, also increases the generation of ROS and shows better hemocompatibility. Conclusion: Vitamin E TPGS could be set as a vital additive to improve therapeutic efficacy and reduce offsite toxicity and dosing frequency.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.