Implicit-explicit Schemes for Incompressible Flow Problems with Variable Viscosity

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gabriel Barrenechea, Ernesto Castillo, Douglas Pacheco
{"title":"Implicit-explicit Schemes for Incompressible Flow Problems with Variable Viscosity","authors":"Gabriel Barrenechea, Ernesto Castillo, Douglas Pacheco","doi":"10.1137/23m1606526","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2660-A2682, August 2024. <br/> Abstract. This article investigates different implicit-explicit (IMEX) methods for incompressible flows with variable viscosity. The viscosity field may depend on space and time alone or, for example, on velocity gradients. Unlike most previous works on IMEX schemes, which focus on the convective term, we propose also treating parts of the diffusive term explicitly, which can reduce the coupling between the velocity components. We present different IMEX alternatives for the variable-viscosity Navier–Stokes system, analyzing their theoretical and algorithmic properties. Temporal stability is proven for all the methods presented, including monolithic and fractional-step variants. These results are unconditional except for one of the fractional-step discretizations, whose stability is shown for time-step sizes under an upper bound that depends solely on the problem data. The key finding of this work is a class of IMEX schemes whose steps decouple the velocity components and are fully linearized (even if the viscosity depends nonlinearly on the velocity) without requiring any CFL condition for stability. Moreover, in the presence of Neumann boundaries, some of our formulations lead naturally to conditions involving normal pseudotractions. This generalizes to the variable-viscosity case what happens for the standard Laplacian form with constant viscosity. Our analysis is supported by a series of numerical experiments.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1606526","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2660-A2682, August 2024.
Abstract. This article investigates different implicit-explicit (IMEX) methods for incompressible flows with variable viscosity. The viscosity field may depend on space and time alone or, for example, on velocity gradients. Unlike most previous works on IMEX schemes, which focus on the convective term, we propose also treating parts of the diffusive term explicitly, which can reduce the coupling between the velocity components. We present different IMEX alternatives for the variable-viscosity Navier–Stokes system, analyzing their theoretical and algorithmic properties. Temporal stability is proven for all the methods presented, including monolithic and fractional-step variants. These results are unconditional except for one of the fractional-step discretizations, whose stability is shown for time-step sizes under an upper bound that depends solely on the problem data. The key finding of this work is a class of IMEX schemes whose steps decouple the velocity components and are fully linearized (even if the viscosity depends nonlinearly on the velocity) without requiring any CFL condition for stability. Moreover, in the presence of Neumann boundaries, some of our formulations lead naturally to conditions involving normal pseudotractions. This generalizes to the variable-viscosity case what happens for the standard Laplacian form with constant viscosity. Our analysis is supported by a series of numerical experiments.
粘性可变的不可压缩流动问题的隐式-显式方案
SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2660-A2682 页,2024 年 8 月。 摘要本文研究了粘性可变不可压缩流的不同隐式-显式(IMEX)方法。粘度场可能仅取决于空间和时间,也可能取决于速度梯度等。与以往大多数侧重于对流项的 IMEX 方案不同,我们建议同时显式处理部分扩散项,这样可以减少速度分量之间的耦合。我们针对变粘度 Navier-Stokes 系统提出了不同的 IMEX 替代方案,分析了它们的理论和算法特性。所介绍的所有方法,包括单步和分数步变体,都证明了时间稳定性。这些结果都是无条件的,只有一种分数步离散法例外,它的稳定性是在一个完全取决于问题数据的上限值下的时间步长。这项工作的关键发现是一类 IMEX 方案,其步骤与速度分量解耦并完全线性化(即使粘度非线性地依赖于速度),而不需要任何 CFL 稳定性条件。此外,在存在 Neumann 边界的情况下,我们的一些公式自然会引出涉及正常伪抽象的条件。这就把粘性恒定的标准拉普拉斯形式的情况推广到了粘性可变的情况。我们的分析得到了一系列数值实验的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信