Adaptivity in Local Kernel Based Methods for Approximating the Action of Linear Operators

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jonah A. Reeger
{"title":"Adaptivity in Local Kernel Based Methods for Approximating the Action of Linear Operators","authors":"Jonah A. Reeger","doi":"10.1137/23m1598052","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2683-A2708, August 2024. <br/> Abstract. Building on the successes of local kernel methods for approximating the solutions to partial differential equations (PDEs) and the evaluation of definite integrals (quadrature/cubature), a local estimate of the error in such approximations is developed. This estimate is useful for determining locations in the solution domain where increased node density (equivalently, reduction in the spacing between nodes) can decrease the error in the solution. An adaptive procedure for adding nodes to the domain for both the approximation of derivatives and the approximate evaluation of definite integrals is described. This method efficiently computes the error estimate at a set of prescribed points and adds new nodes for approximation where the error is too large. Computational experiments demonstrate close agreement between the error estimate and actual absolute error in the approximation. Such methods are necessary or desirable when approximating solutions to PDEs (or in the case of quadrature/cubature), where the initial data and subsequent solution (or integrand) exhibit localized features that require significant refinement to resolve and where uniform increases in the density of nodes across the entire computational domain is not possible or too burdensome.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1598052","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2683-A2708, August 2024.
Abstract. Building on the successes of local kernel methods for approximating the solutions to partial differential equations (PDEs) and the evaluation of definite integrals (quadrature/cubature), a local estimate of the error in such approximations is developed. This estimate is useful for determining locations in the solution domain where increased node density (equivalently, reduction in the spacing between nodes) can decrease the error in the solution. An adaptive procedure for adding nodes to the domain for both the approximation of derivatives and the approximate evaluation of definite integrals is described. This method efficiently computes the error estimate at a set of prescribed points and adds new nodes for approximation where the error is too large. Computational experiments demonstrate close agreement between the error estimate and actual absolute error in the approximation. Such methods are necessary or desirable when approximating solutions to PDEs (or in the case of quadrature/cubature), where the initial data and subsequent solution (or integrand) exhibit localized features that require significant refinement to resolve and where uniform increases in the density of nodes across the entire computational domain is not possible or too burdensome.
基于局部核的线性算子作用近似方法的自适应性
SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2683-A2708 页,2024 年 8 月。 摘要基于近似偏微分方程(PDE)解和定积分(正交/余量)求值的局部内核方法的成功经验,本文提出了对此类近似误差的局部估计。该估计值有助于确定求解域中增加节点密度(等同于减少节点间距)可减少求解误差的位置。本文介绍了一种自适应程序,用于在导数近似和定积分近似计算的域中添加节点。这种方法能有效计算一组规定点的误差估计值,并在误差过大的地方添加新节点进行近似。计算实验表明,误差估计值与近似值的实际绝对误差非常接近。在近似 PDEs 的解时(或在正交/余量的情况下),初始数据和随后的解(或积分)表现出局部特征,需要大量细化才能解决,而在整个计算域中均匀增加节点密度是不可能或过于繁琐时,这种方法是必要或可取的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信