{"title":"Multilevel Parareal Algorithm with Averaging for Oscillatory Problems","authors":"Juliane Rosemeier, Terry Haut, Beth Wingate","doi":"10.1137/23m1547123","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2709-A2736, August 2024. <br/> Abstract. The present study is an extension of the work done by Peddle, Haut, and Wingate [SIAM J. Sci. Comput., 41 (2019), pp. A3476–A3497] and Haut and Wingate [SIAM J. Sci. Comput., 36 (2014), pp. A693–A713], where a two-level Parareal method with mapping and averaging is examined. The method proposed in this paper is a multilevel Parareal method with arbitrarily many levels, which is not restricted to the two-level case. We give an asymptotic error estimate which reduces to the two-level estimate for the case when only two levels are considered. Introducing more than two levels has important consequences for the averaging procedure, as we choose separate averaging windows for each of the different levels, which is an additional new feature of the present study. The different averaging windows make the proposed method especially appropriate for nonlinear multiscale problems, because we can introduce a level for each intrinsic scale of the problem and adapt the averaging procedure such that we reproduce the behavior of the model on the particular scale resolved by the level. The method is applied to nonlinear differential equations. The nonlinearities can generate a range of frequencies in the problem. The computational cost of the new method is investigated and studied on several examples.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"22 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1547123","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2709-A2736, August 2024. Abstract. The present study is an extension of the work done by Peddle, Haut, and Wingate [SIAM J. Sci. Comput., 41 (2019), pp. A3476–A3497] and Haut and Wingate [SIAM J. Sci. Comput., 36 (2014), pp. A693–A713], where a two-level Parareal method with mapping and averaging is examined. The method proposed in this paper is a multilevel Parareal method with arbitrarily many levels, which is not restricted to the two-level case. We give an asymptotic error estimate which reduces to the two-level estimate for the case when only two levels are considered. Introducing more than two levels has important consequences for the averaging procedure, as we choose separate averaging windows for each of the different levels, which is an additional new feature of the present study. The different averaging windows make the proposed method especially appropriate for nonlinear multiscale problems, because we can introduce a level for each intrinsic scale of the problem and adapt the averaging procedure such that we reproduce the behavior of the model on the particular scale resolved by the level. The method is applied to nonlinear differential equations. The nonlinearities can generate a range of frequencies in the problem. The computational cost of the new method is investigated and studied on several examples.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.