A Fast Iterative PDE-Based Algorithm for Feedback Controls of Nonsmooth Mean-Field Control Problems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang
{"title":"A Fast Iterative PDE-Based Algorithm for Feedback Controls of Nonsmooth Mean-Field Control Problems","authors":"Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang","doi":"10.1137/21m1441158","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2737-A2773, August 2024. <br/> Abstract. We propose a PDE-based accelerated gradient algorithm for optimal feedback controls of McKean–Vlasov dynamics that involve mean-field interactions both in the state and action. The method exploits a forward-backward splitting approach and iteratively refines the approximate controls based on the gradients of smooth costs, the proximal maps of nonsmooth costs, and dynamically updated momentum parameters. At each step, the state dynamics is approximated via a particle system, and the required gradient is evaluated through a coupled system of nonlocal linear PDEs. The latter is solved by finite difference approximation or neural network-based residual approximation, depending on the state dimension. We present exhaustive numerical experiments for low- and high-dimensional mean-field control problems, including sparse stabilization of stochastic Cucker–Smale models, which reveal that our algorithm captures important structures of the optimal feedback control and achieves a robust performance with respect to parameter perturbation.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1441158","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2737-A2773, August 2024.
Abstract. We propose a PDE-based accelerated gradient algorithm for optimal feedback controls of McKean–Vlasov dynamics that involve mean-field interactions both in the state and action. The method exploits a forward-backward splitting approach and iteratively refines the approximate controls based on the gradients of smooth costs, the proximal maps of nonsmooth costs, and dynamically updated momentum parameters. At each step, the state dynamics is approximated via a particle system, and the required gradient is evaluated through a coupled system of nonlocal linear PDEs. The latter is solved by finite difference approximation or neural network-based residual approximation, depending on the state dimension. We present exhaustive numerical experiments for low- and high-dimensional mean-field control problems, including sparse stabilization of stochastic Cucker–Smale models, which reveal that our algorithm captures important structures of the optimal feedback control and achieves a robust performance with respect to parameter perturbation.
基于 PDE 的非光滑平均场控制问题反馈控制快速迭代算法
SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2737-A2773 页,2024 年 8 月。 摘要我们提出了一种基于 PDE 的加速梯度算法,用于麦金-弗拉索夫(McKean-Vlasov)动力学的最优反馈控制。该方法利用前向-后向分裂方法,根据平滑代价的梯度、非平滑代价的近似图和动态更新的动量参数迭代改进近似控制。每一步都通过粒子系统对状态动态进行近似,并通过非局部线性 PDE 耦合系统评估所需梯度。后者根据状态维度,通过有限差分近似或基于神经网络的残差近似来求解。我们针对低维和高维均场控制问题(包括随机 Cucker-Smale 模型的稀疏稳定)进行了详尽的数值实验,结果表明我们的算法捕捉到了最优反馈控制的重要结构,并在参数扰动方面实现了稳健的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信