Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang
{"title":"A Fast Iterative PDE-Based Algorithm for Feedback Controls of Nonsmooth Mean-Field Control Problems","authors":"Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang","doi":"10.1137/21m1441158","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2737-A2773, August 2024. <br/> Abstract. We propose a PDE-based accelerated gradient algorithm for optimal feedback controls of McKean–Vlasov dynamics that involve mean-field interactions both in the state and action. The method exploits a forward-backward splitting approach and iteratively refines the approximate controls based on the gradients of smooth costs, the proximal maps of nonsmooth costs, and dynamically updated momentum parameters. At each step, the state dynamics is approximated via a particle system, and the required gradient is evaluated through a coupled system of nonlocal linear PDEs. The latter is solved by finite difference approximation or neural network-based residual approximation, depending on the state dimension. We present exhaustive numerical experiments for low- and high-dimensional mean-field control problems, including sparse stabilization of stochastic Cucker–Smale models, which reveal that our algorithm captures important structures of the optimal feedback control and achieves a robust performance with respect to parameter perturbation.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"23 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1441158","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2737-A2773, August 2024. Abstract. We propose a PDE-based accelerated gradient algorithm for optimal feedback controls of McKean–Vlasov dynamics that involve mean-field interactions both in the state and action. The method exploits a forward-backward splitting approach and iteratively refines the approximate controls based on the gradients of smooth costs, the proximal maps of nonsmooth costs, and dynamically updated momentum parameters. At each step, the state dynamics is approximated via a particle system, and the required gradient is evaluated through a coupled system of nonlocal linear PDEs. The latter is solved by finite difference approximation or neural network-based residual approximation, depending on the state dimension. We present exhaustive numerical experiments for low- and high-dimensional mean-field control problems, including sparse stabilization of stochastic Cucker–Smale models, which reveal that our algorithm captures important structures of the optimal feedback control and achieves a robust performance with respect to parameter perturbation.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.