Robust Iterative Method for Symmetric Quantum Signal Processing in All Parameter Regimes

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yulong Dong, Lin Lin, Hongkang Ni, Jiasu Wang
{"title":"Robust Iterative Method for Symmetric Quantum Signal Processing in All Parameter Regimes","authors":"Yulong Dong, Lin Lin, Hongkang Ni, Jiasu Wang","doi":"10.1137/23m1598192","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2951-A2971, October 2024. <br/> Abstract. This paper addresses the problem of solving nonlinear systems in the context of symmetric quantum signal processing (QSP), a powerful technique for implementing matrix functions on quantum computers. Symmetric QSP focuses on representing target polynomials as products of matrices in SU(2) that possess symmetry properties. We present a novel Newton’s method tailored for efficiently solving the nonlinear system involved in determining the phase factors within the symmetric QSP framework. Our method demonstrates rapid and robust convergence in all parameter regimes, including the challenging scenario with ill-conditioned Jacobian matrices, using standard double precision arithmetic operations. For instance, solving symmetric QSP for a highly oscillatory target function [math] (polynomial degree [math]) takes 6 iterations to converge to machine precision when [math], and the number of iterations only increases to 18 iterations when [math] with a highly ill-conditioned Jacobian matrix. Leveraging the matrix product state structure of symmetric QSP, the computation of the Jacobian matrix incurs a computational cost comparable to a single function evaluation. Moreover, we introduce a reformulation of symmetric QSP using real-number arithmetics, further enhancing the method’s efficiency. Extensive numerical tests validate the effectiveness and robustness of our approach, which has been implemented in the QSPPACK software package.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1598192","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2951-A2971, October 2024.
Abstract. This paper addresses the problem of solving nonlinear systems in the context of symmetric quantum signal processing (QSP), a powerful technique for implementing matrix functions on quantum computers. Symmetric QSP focuses on representing target polynomials as products of matrices in SU(2) that possess symmetry properties. We present a novel Newton’s method tailored for efficiently solving the nonlinear system involved in determining the phase factors within the symmetric QSP framework. Our method demonstrates rapid and robust convergence in all parameter regimes, including the challenging scenario with ill-conditioned Jacobian matrices, using standard double precision arithmetic operations. For instance, solving symmetric QSP for a highly oscillatory target function [math] (polynomial degree [math]) takes 6 iterations to converge to machine precision when [math], and the number of iterations only increases to 18 iterations when [math] with a highly ill-conditioned Jacobian matrix. Leveraging the matrix product state structure of symmetric QSP, the computation of the Jacobian matrix incurs a computational cost comparable to a single function evaluation. Moreover, we introduce a reformulation of symmetric QSP using real-number arithmetics, further enhancing the method’s efficiency. Extensive numerical tests validate the effectiveness and robustness of our approach, which has been implemented in the QSPPACK software package.
所有参数状态下对称量子信号处理的稳健迭代法
SIAM 科学计算期刊》,第 46 卷第 5 期,第 A2951-A2971 页,2024 年 10 月。 摘要对称量子信号处理(QSP)是在量子计算机上实现矩阵函数的一种强大技术,本文探讨了对称量子信号处理背景下的非线性系统求解问题。对称量子信号处理侧重于将目标多项式表示为具有对称特性的 SU(2) 矩阵的乘积。我们提出了一种新颖的牛顿方法,专门用于在对称 QSP 框架内高效求解确定相位因子所涉及的非线性系统。我们的方法使用标准双精度算术运算,在所有参数情况下,包括雅各布矩阵条件不佳的挑战情况下,都表现出快速、稳健的收敛性。例如,求解高度振荡目标函数 [math](多项式度 [math])的对称 QSP 时,当 [math] 时需要 6 次迭代才能收敛到机器精度,而当 [math] 时,迭代次数仅增加到 18 次,且雅各矩阵高度非条件化。利用对称 QSP 的矩阵乘积状态结构,计算雅各布矩阵所需的计算成本与单次函数评估相当。此外,我们还引入了使用实数运算的对称 QSP 重构,进一步提高了该方法的效率。广泛的数值测试验证了我们的方法的有效性和稳健性,该方法已在 QSPPACK 软件包中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信