Span-based semantic syntactic dual enhancement for aspect sentiment triplet extraction

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shuxia Ren, Zewei Guo, Xiaohan Li, Ruikun Zhong
{"title":"Span-based semantic syntactic dual enhancement for aspect sentiment triplet extraction","authors":"Shuxia Ren, Zewei Guo, Xiaohan Li, Ruikun Zhong","doi":"10.1007/s10844-024-00881-w","DOIUrl":null,"url":null,"abstract":"<p>Aspect-Based Sentiment Triple Extraction (ASTE), a critical sub-task of Aspect-Based Sentiment Analysis (ABSA), has received extensive attention in recent years. ASTE aims to extract structured sentiment triples from texts, with most existing studies focusing on designing new strategic frameworks. Nonetheless, these methods often overlook the complex characteristics of linguistic expression and the deeper semantic nuances, leading to deficiencies in extracting the semantic representations of triples and effectively utilizing syntactic relationships in texts. To address these challenges, this paper introduces a span-based semantic and syntactic Dual-Enhanced model that deeply integrates rich syntactic information, such as part-of-speech tagging, constituent syntax, and dependency syntax structures. Specifically, we designed a semantic encoder and a syntactic encoder to capture the semantic-syntactic information closely related to the sentence’s underlying intent. Through a Feature Interaction Module, we effectively integrate information across different dimensions and promote a more comprehensive understanding of the relationships between aspects and opinions. We also adopted a span-based tagging scheme that generates more precise aspect sentiment triple extractions by exploring cross-level information and constraints. Experimental results on benchmark datasets derived from the SemEval challenge prove that our model significantly outperforms existing baselines.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"26 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00881-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect-Based Sentiment Triple Extraction (ASTE), a critical sub-task of Aspect-Based Sentiment Analysis (ABSA), has received extensive attention in recent years. ASTE aims to extract structured sentiment triples from texts, with most existing studies focusing on designing new strategic frameworks. Nonetheless, these methods often overlook the complex characteristics of linguistic expression and the deeper semantic nuances, leading to deficiencies in extracting the semantic representations of triples and effectively utilizing syntactic relationships in texts. To address these challenges, this paper introduces a span-based semantic and syntactic Dual-Enhanced model that deeply integrates rich syntactic information, such as part-of-speech tagging, constituent syntax, and dependency syntax structures. Specifically, we designed a semantic encoder and a syntactic encoder to capture the semantic-syntactic information closely related to the sentence’s underlying intent. Through a Feature Interaction Module, we effectively integrate information across different dimensions and promote a more comprehensive understanding of the relationships between aspects and opinions. We also adopted a span-based tagging scheme that generates more precise aspect sentiment triple extractions by exploring cross-level information and constraints. Experimental results on benchmark datasets derived from the SemEval challenge prove that our model significantly outperforms existing baselines.

Abstract Image

基于跨度的语义句法二元增强,用于方面情感三元组提取
基于方面的情感三元提取(ASTE)是基于方面的情感分析(ABSA)的一个重要子任务,近年来受到广泛关注。ASTE 的目的是从文本中提取结构化的情感三元组,现有研究大多侧重于设计新的策略框架。然而,这些方法往往忽略了语言表达的复杂特点和深层语义的细微差别,导致在提取三元组的语义表征和有效利用文本中的句法关系方面存在不足。为了应对这些挑战,本文介绍了一种基于跨度的语义和句法双增强模型,该模型深度整合了丰富的句法信息,如语音部分标记、成分句法和依赖句法结构。具体来说,我们设计了一个语义编码器和一个句法编码器,以捕捉与句子基本意图密切相关的语义句法信息。通过特征交互模块,我们有效地整合了不同维度的信息,促进了对方面和观点之间关系的更全面理解。我们还采用了基于跨度的标记方案,通过探索跨层信息和约束条件,生成更精确的方面情感三重提取。在 SemEval 挑战赛的基准数据集上的实验结果证明,我们的模型明显优于现有的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信