Allegra De Filippo, Emanuele Di Giacomo, Andrea Borghesi
{"title":"Machine learning approaches to predict the execution time of the meteorological simulation software COSMO","authors":"Allegra De Filippo, Emanuele Di Giacomo, Andrea Borghesi","doi":"10.1007/s10844-024-00880-x","DOIUrl":null,"url":null,"abstract":"<p>Predicting the execution time of weather forecast models is a complex task, since these models are usually performed on High Performance Computing systems that require large computing capabilities. Indeed, a reliable prediction can imply several benefits, by allowing for an improved planning of the model execution, a better allocation of available resources, and the identification of possible anomalies. However, to make such predictions is usually hard, since there is a scarcity of datasets that benchmark the existing meteorological simulation models. In this work, we focus on the runtime predictions of the execution of the COSMO (COnsortium for SMall-scale MOdeling) weather forecasting model used at the Hydro-Meteo-Climate Structure of the Regional Agency for the Environment and Energy Prevention Emilia-Romagna. We show how a plethora of Machine Learning approaches can obtain accurate runtime predictions of this complex model, by designing a new well-defined benchmark for this application task. Indeed, our contribution is twofold: 1) the creation of a large public dataset reporting the runtime of COSMO run under a variety of different configurations; 2) a comparative study of ML models, which greatly outperform the current state-of-practice used by the domain experts. This data collection represents an essential initial benchmark for this application field, and a useful resource for analyzing the model performance: better accuracy in runtime predictions could help facility owners to improve job scheduling and resource allocation of the entire system; while for a final user, a posteriori analysis could help to identify anomalous runs.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"75 1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00880-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting the execution time of weather forecast models is a complex task, since these models are usually performed on High Performance Computing systems that require large computing capabilities. Indeed, a reliable prediction can imply several benefits, by allowing for an improved planning of the model execution, a better allocation of available resources, and the identification of possible anomalies. However, to make such predictions is usually hard, since there is a scarcity of datasets that benchmark the existing meteorological simulation models. In this work, we focus on the runtime predictions of the execution of the COSMO (COnsortium for SMall-scale MOdeling) weather forecasting model used at the Hydro-Meteo-Climate Structure of the Regional Agency for the Environment and Energy Prevention Emilia-Romagna. We show how a plethora of Machine Learning approaches can obtain accurate runtime predictions of this complex model, by designing a new well-defined benchmark for this application task. Indeed, our contribution is twofold: 1) the creation of a large public dataset reporting the runtime of COSMO run under a variety of different configurations; 2) a comparative study of ML models, which greatly outperform the current state-of-practice used by the domain experts. This data collection represents an essential initial benchmark for this application field, and a useful resource for analyzing the model performance: better accuracy in runtime predictions could help facility owners to improve job scheduling and resource allocation of the entire system; while for a final user, a posteriori analysis could help to identify anomalous runs.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.