Beurling–Carleson sets, inner functions and a semilinear equation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Oleg Ivrii, Artur Nicolau
{"title":"Beurling–Carleson sets, inner functions and a semilinear equation","authors":"Oleg Ivrii, Artur Nicolau","doi":"10.2140/apde.2024.17.2585","DOIUrl":null,"url":null,"abstract":"<p>Beurling–Carleson sets have appeared in a number of areas of complex analysis such as boundary zero sets of analytic functions, inner functions with derivative in the Nevanlinna class, cyclicity in weighted Bergman spaces, Fuchsian groups of Widom-type and the corona problem in quotient Banach algebras. After surveying these developments, we give a general definition of Beurling–Carleson sets and discuss some of their basic properties. We show that the Roberts decomposition characterizes measures that do not charge Beurling–Carleson sets. </p><p> For a positive singular measure <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> on the unit circle, let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> denote the singular inner function with singular measure <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>. In the second part of the paper, we use a corona-type decomposition to relate a number of properties of singular measures on the unit circle, such as membership of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>′</mi></mrow></msubsup></math> in the Nevanlinna class <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒩</mi></math>, area conditions on level sets of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> and wepability. It was known that each of these properties holds for measures concentrated on Beurling–Carleson sets. We show that each of these properties implies that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> lives on a countable union of Beurling–Carleson sets. We also describe partial relations involving the membership of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>′</mi></mrow></msubsup></math> in the Hardy space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math>, membership of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>S</mi></mrow><mrow><mi>μ</mi></mrow></msub></math> in the Besov space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow></msup></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1</mn><mo>−</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math>-Beurling–Carleson sets and give a number of examples which show that our results are optimal. </p><p> Finally, we show that measures that live on countable unions of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math>-Beurling–Carleson sets are almost in bijection with nearly maximal solutions of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><mi>u</mi>\n<mo>=</mo> <msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup>\n<mo>⋅</mo> <msub><mrow><mi>χ</mi></mrow><mrow><mi>u</mi><mo>&gt;</mo><mn>0</mn></mrow></msub></math> when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>&gt;</mo> <mn>3</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi>\n<mo>=</mo>\n<mo stretchy=\"false\">(</mo><mi>p</mi>\n<mo>−</mo> <mn>3</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mo stretchy=\"false\">(</mo><mi>p</mi>\n<mo>−</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></math>. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2585","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Beurling–Carleson sets have appeared in a number of areas of complex analysis such as boundary zero sets of analytic functions, inner functions with derivative in the Nevanlinna class, cyclicity in weighted Bergman spaces, Fuchsian groups of Widom-type and the corona problem in quotient Banach algebras. After surveying these developments, we give a general definition of Beurling–Carleson sets and discuss some of their basic properties. We show that the Roberts decomposition characterizes measures that do not charge Beurling–Carleson sets.

For a positive singular measure μ on the unit circle, let Sμ denote the singular inner function with singular measure μ. In the second part of the paper, we use a corona-type decomposition to relate a number of properties of singular measures on the unit circle, such as membership of Sμ in the Nevanlinna class 𝒩, area conditions on level sets of Sμ and wepability. It was known that each of these properties holds for measures concentrated on Beurling–Carleson sets. We show that each of these properties implies that μ lives on a countable union of Beurling–Carleson sets. We also describe partial relations involving the membership of Sμ in the Hardy space Hp, membership of Sμ in the Besov space Bp and (1p)-Beurling–Carleson sets and give a number of examples which show that our results are optimal.

Finally, we show that measures that live on countable unions of α-Beurling–Carleson sets are almost in bijection with nearly maximal solutions of Δu = up χu>0 when p > 3 and α = (p 3)(p 1).

Beurling-Carleson 集、内函数和半线性方程
Beurling-Carleson 集出现在复分析的许多领域,如解析函数的边界零集、内万林纳类导数的内函数、加权伯格曼空间的循环性、维多姆类型的富集和商巴纳赫代数中的日冕问题。在概述了这些发展之后,我们给出了 Beurling-Carleson 集的一般定义,并讨论了它们的一些基本性质。我们证明,罗伯茨分解的特征是不给 Beurling-Carleson 集充电的度量。 对于单位圆上的正奇异度量 μ,让 Sμ 表示具有奇异度量 μ 的奇异内函数。在论文的第二部分,我们使用日冕型分解来联系单位圆上奇异度量的一些性质,如 Sμ′ 在内万林纳类 𝒩 中的成员资格、Sμ 的级集的面积条件和可微性。众所周知,这些性质对于集中在贝林-卡列松集合上的度量都是成立的。我们证明这些性质都意味着 μ 存在于 Beurling-Carleson 集的可数联盟上。我们还描述了涉及 Sμ′ 在哈代空间 Hp 中的成员资格、Sμ 在贝索夫空间 Bp 中的成员资格以及 (1-p)-Beurling-Carleson 集的部分关系,并给出了一些例子,证明我们的结果是最优的。 最后,我们证明,当 p> 3 和 α=(p- 3)∕(p- 1) 时,活在 α-Beurling-Carleson 集的可数联盟上的度量与 Δu= up⋅ χu>0 的近最大解几乎是双射的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信