{"title":"Host–Kra factors for ⊕ p∈Pℤ∕pℤ actions and finite-dimensional nilpotent systems","authors":"Or Shalom","doi":"10.2140/apde.2024.17.2379","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒫</mi></math> be a countable multiset of primes and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi>\n<mo>=</mo><msub><mrow><mi> ⊕</mi><mo> <!--FUNCTION APPLICATION--></mo>\n<!--nolimits--></mrow><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></msub><mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math>. We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>. We show that the universal characteristic factor of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo><</mo>\n<mi>k</mi>\n<mo>+</mo> <mn>1</mn></math> is a factor of an inverse limit of <span>finite-dimensional</span>\n<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math><span>-step</span>\n<span>nilpotent homogeneous spaces</span>. The latter is a counterpart of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math>-convergence of multiple ergodic averages associated with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-term arithmetic progressions in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi></math>-actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math>-actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2379","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a countable multiset of primes and let . We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group . We show that the universal characteristic factor of order is a factor of an inverse limit of finite-dimensional-stepnilpotent homogeneous spaces. The latter is a counterpart of a -step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the -convergence of multiple ergodic averages associated with -term arithmetic progressions in and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning -actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning -actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.