{"title":"Host–Kra factors for ⊕ p∈Pℤ∕pℤ actions and finite-dimensional nilpotent systems","authors":"Or Shalom","doi":"10.2140/apde.2024.17.2379","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒫</mi></math> be a countable multiset of primes and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi>\n<mo>=</mo><msub><mrow><mi> ⊕</mi><mo> <!--FUNCTION APPLICATION--></mo>\n<!--nolimits--></mrow><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></msub><mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math>. We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>. We show that the universal characteristic factor of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo><</mo>\n<mi>k</mi>\n<mo>+</mo> <mn>1</mn></math> is a factor of an inverse limit of <span>finite-dimensional</span>\n<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math><span>-step</span>\n<span>nilpotent homogeneous spaces</span>. The latter is a counterpart of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math>-convergence of multiple ergodic averages associated with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-term arithmetic progressions in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi></math>-actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math>-actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"181 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2379","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a countable multiset of primes and let . We study the universal characteristic factors associated with the Gowers–Host–Kra seminorms for the group . We show that the universal characteristic factor of order is a factor of an inverse limit of finite-dimensional-stepnilpotent homogeneous spaces. The latter is a counterpart of a -step nilsystem where the homogeneous group is not necessarily a Lie group. As an application of our structure theorem we derive an alternative proof for the -convergence of multiple ergodic averages associated with -term arithmetic progressions in and derive a formula for the limit in the special case where the underlying space is a nilpotent homogeneous system. Our results provide a counterpart of the structure theorem of Host and Kra (2005) and Ziegler (2007) concerning -actions and generalize the results of Bergelson, Tao and Ziegler (2011, 2015) concerning -actions. This is also the first instance of studying the Host–Kra factors of nonfinitely generated groups of unbounded torsion.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.