A substitute for Kazhdan’s property (T) for universal nonlattices

IF 1.8 1区 数学 Q1 MATHEMATICS
Narutaka Ozawa
{"title":"A substitute for Kazhdan’s property (T) for universal nonlattices","authors":"Narutaka Ozawa","doi":"10.2140/apde.2024.17.2541","DOIUrl":null,"url":null,"abstract":"<p>The well-known theorem of Shalom–Vaserstein and Ershov–Jaikin-Zapirain states that the group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> EL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"bold-script\">ℛ</mi><mo stretchy=\"false\">)</mo></math>, generated by elementary matrices over a finitely generated commutative ring <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℛ</mi></math>, has Kazhdan’s property (T) as soon as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>≥</mo> <mn>3</mn></math>. This is no longer true if the ring <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℛ</mi></math> is replaced by a commutative rng (a ring but without the identity) due to nilpotent quotients <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> EL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"bold-script\">ℛ</mi><mo>∕</mo><msup><mrow><mi mathvariant=\"bold-script\">ℛ</mi></mrow><mrow><mi>k</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>. We prove that even in such a case the group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> EL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"bold-script\">ℛ</mi><mo stretchy=\"false\">)</mo></math> satisfies a certain property that can substitute property (T), provided that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> is large enough. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"6 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2541","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The well-known theorem of Shalom–Vaserstein and Ershov–Jaikin-Zapirain states that the group EL n(), generated by elementary matrices over a finitely generated commutative ring , has Kazhdan’s property (T) as soon as n 3. This is no longer true if the ring is replaced by a commutative rng (a ring but without the identity) due to nilpotent quotients EL n(k). We prove that even in such a case the group EL n() satisfies a certain property that can substitute property (T), provided that n is large enough.

卡兹丹性质 (T) 在通用非网格中的替代物
沙洛姆-瓦瑟斯坦和埃尔绍夫-杰金-扎皮林的著名定理指出,由有限生成交换环ℛ上的基本矩阵生成的群 EL n(ℛ) 只要 n≥ 3 就具有卡兹丹性质 (T)。如果由于无穷商 EL n(ℛ∕ℛk) 的原因,把环ℛ 换成了交换环 rng(一个环,但没有同一性),那么上述性质就不再成立了。我们将证明,即使在这种情况下,只要 n 足够大,EL n(ℛ)群也能满足某个可以替代性质 (T) 的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信