Unique continuation for the heat operator with potentials in weak spaces

IF 1.8 1区 数学 Q1 MATHEMATICS
Eunhee Jeong, Sanghyuk Lee, Jaehyeon Ryu
{"title":"Unique continuation for the heat operator with potentials in weak spaces","authors":"Eunhee Jeong, Sanghyuk Lee, Jaehyeon Ryu","doi":"10.2140/apde.2024.17.2257","DOIUrl":null,"url":null,"abstract":"<p>We prove the strong unique continuation property for the differential inequality </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>|</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub>\n<mo>+</mo> <mi mathvariant=\"normal\">Δ</mi><mo stretchy=\"false\">)</mo><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>|</mo><mo>≤</mo>\n<mi>V</mi>\n<mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>|</mo><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>|</mo><mo>,</mo>\n</math>\n</div>\n<p> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> contained in weak spaces. In particular, we establish the strong unique continuation property for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi>\n<mo>∈</mo> <msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>∞</mi></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mo stretchy=\"false\">[</mo><mi>t</mi><mo stretchy=\"false\">]</mo><mi>d</mi><mo>∕</mo><mn>2</mn><mo>,</mo><mi>∞</mi></mrow></msubsup></math>, which has been left open since the works of Escauriaza (2000) and Escauriaza and Vega (2001). Our results are consequences of the Carleman estimates for the heat operator in the Lorentz spaces. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"37 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.2257","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the strong unique continuation property for the differential inequality

|(t + Δ)u(x,t)| V (x,t)|u(x,t)|,

with V contained in weak spaces. In particular, we establish the strong unique continuation property for V LtLx[t]d2,, which has been left open since the works of Escauriaza (2000) and Escauriaza and Vega (2001). Our results are consequences of the Carleman estimates for the heat operator in the Lorentz spaces.

弱空间中具有势的热算子的唯一延续
我们证明了微分不等式 |(∂t+ Δ)u(x,t)|≤V(x,t)|u(x,t)| 的强唯一连续性,其中 V 包含在弱空间中。特别是,我们建立了 V∈ Lt∞Lx[t]d∕2,∞ 的强唯一延续性质,这是自 Escauriaza (2000) 和 Escauriaza and Vega (2001) 的著作以来一直悬而未决的问题。我们的结果是洛伦兹空间中热算子的卡勒曼估计的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信