{"title":"Tropical adic spaces I: the continuous spectrum of a topological semiring","authors":"Netanel Friedenberg, Kalina Mincheva","doi":"10.1007/s40687-024-00467-6","DOIUrl":null,"url":null,"abstract":"<p>Toward building tropical analogues of adic spaces, we study certain spaces of prime congruences as a topological semiring replacement for the space of continuous valuations on a topological ring. This requires building the theory of topological idempotent semirings, and we consider semirings of convergent power series as a primary example. We consider the semiring of convergent power series as a topological space by defining a metric on it. We check that, in tropical toric cases, the proposed objects carry meaningful geometric information. In particular, we show that the dimension behaves as expected. We give an explicit characterization of the points in terms of classical polyhedral geometry in a follow-up paper.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00467-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Toward building tropical analogues of adic spaces, we study certain spaces of prime congruences as a topological semiring replacement for the space of continuous valuations on a topological ring. This requires building the theory of topological idempotent semirings, and we consider semirings of convergent power series as a primary example. We consider the semiring of convergent power series as a topological space by defining a metric on it. We check that, in tropical toric cases, the proposed objects carry meaningful geometric information. In particular, we show that the dimension behaves as expected. We give an explicit characterization of the points in terms of classical polyhedral geometry in a follow-up paper.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.